Skip to main content

Geometric Searching over the Rationals

  • Conference paper
  • First Online:
Algorithms - ESA’ 99 (ESA 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1643))

Included in the following conference series:

Abstract

We revisit classical geometric search problems under the assumption of rational coordinates. Our main result is a tight bound for point separation, ie, to determine whether n given points lie on one side of a query line.We show that with polynomial storage the query time is Θ(log b/ log log b), where b is the bit length of the rationals used in specifying the line and the points. The lower bound holds in Yao’s cell probe model with storage in n O(1) and word size in b O(1). By duality, this provides a tight lower bound on the complexity on the polygon point enclosure problem: given a polygon in the plane, is a query point in it?

This work was supported in part by NSF Grant CCR-96-23768, ARO Grant DAAH04-96-1- 0181, NEC Research Institute, Ecole Polytechnique, and INRIA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M. A lower bound for finding predecessors in Yao’s cell probe model, Combinatorica, 8 (1988), 235–247.

    Article  MATH  MathSciNet  Google Scholar 

  2. Beame, P., Fich, F. Optimal bounds for the predecessor problem, Proc. 31st Annu. ACM Symp. Theory Comput. (1999), to appear.

    Google Scholar 

  3. Ben-Or, M. Lower bounds for algebraic computation trees, Proc. 15th Annu. ACM Symp. Theory Comput. (1983), 80–86.

    Google Scholar 

  4. Björner, A., Lovász, L., Yao, A. C. Linear decision trees: Volume estimates and topological bounds, Proc. 24th Annu. ACM Symp. Theory Comput. (1992), 170–177.

    Google Scholar 

  5. Chakrabarti, A., Chazelle, B., Gum, B., Lvov, A. A good neighbor is hard to find, Proc. 31st Annu. ACM Symp. Theory Comput. (1999), to appear.

    Google Scholar 

  6. Chazelle, B. The Discrepancy Method: Randomness and Complexity, Cambridge University Press, to appear.

    Google Scholar 

  7. Fredman, M. L. A lower bound on the complexity of orthogonal range queries, J.ACM, 28 (1981), 696–705.

    Article  MATH  MathSciNet  Google Scholar 

  8. Grigoriev, D., Karpinksi, M., Meyer auf der Heide, F., Smolensky, R.A lower bound for randomized algebraic decision trees, Computational Complexity, 6 (1997), 357–375.

    Article  Google Scholar 

  9. Grigoriev, D., Karpinksi, M., Vorobjov, N. Improved lower bound on testing membership to a polyhedron by algebraic decision trees, Proc. 36th Annu. IEEE Symp. Foundat. Comput. Sci. (1995), 258–265.

    Google Scholar 

  10. Hoeffding, W. Probability inequalities for sums of bounded random variables, J. Amer. Stat. Assoc., 58 (1963), 13–30.

    Article  MATH  MathSciNet  Google Scholar 

  11. Karlsson, R. G. Algorithms in a restricted universe, Tech Report CS-84-50, Univ.Waterloo, Waterloo, ON, 1984.

    Google Scholar 

  12. Karlsson, R. G., Munro, J. I. Proximity on a grid, Proc. 2nd Symp. Theoret. Aspects of Comput. Sci., LNCS Springer, vol.182 (1985), 187–196.

    Google Scholar 

  13. Karlsson, R. G., Overmars, M. H. Scanline algorithms on a grid, BIT, 28 (1988), 227–241.

    Article  MATH  MathSciNet  Google Scholar 

  14. Kushilevitz, E., Nisan, N. Communication Complexity, Cambridge University Press, 1997

    Google Scholar 

  15. Miltersen, P. B. Lower bounds for union-split-find related problems on random access machines, Proc. 26th Annu. ACM Symp. Theory Comput. (1994), 625–634.

    Google Scholar 

  16. Müller, H. Rasterized point location, Proc. Workshop on Graph-Theoretic Concepts in Comput. Sci., Trauner Verlag, Linz (1985), 281–293.

    Google Scholar 

  17. Overmars, M. H. Computational geometry on a grid: an overview, ed. R. A. Earnshaw, Theoretical Foundations of Computer Graphics and CAD, NATO ASI, vol.F40, Springer-Verlag (1988), 167–184.

    Google Scholar 

  18. Yao, A. C. Should tables be sorted?, J. ACM, 28 (1981), 615–628.

    Article  MATH  Google Scholar 

  19. Yao, A. C. On the complexity of maintaining partial sums, SIAM J. Comput. 14 (1985), 277–288.

    Article  MATH  MathSciNet  Google Scholar 

  20. Yao, A. C. Decision tree complexity and Betti numbers, Proc. 26th Annu. ACM Symp. Theory Comput. (1994), 615–624.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chazelle, B. (1999). Geometric Searching over the Rationals. In: Nešetřil, J. (eds) Algorithms - ESA’ 99. ESA 1999. Lecture Notes in Computer Science, vol 1643. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48481-7_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-48481-7_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66251-8

  • Online ISBN: 978-3-540-48481-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics