On the Complexity of Orthogonal Compaction

  • Maurizio Patrignani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1663)


We consider three closely related optimization problems, arising from the graph drawing and the VLSI research areas, and conjectured to be NP-hard, and we prove that, in fact, they are NP-complete. Starting from an orthogonal representation of a graph, i.e., a description of the shape of the edges that does not specify segment lengths or vertex positions, the three problems consist of providing an orthogonal grid drawing of it, while minimizing the area, the total edge length, or the maximum edge length, respectively.


Edge Length Conjunctive Normal Form Truth Assignment Graph Drawing Orthogonal Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal drawings with the minimum number of bends. In F. Dehne, A. Rau-Chaplin, J.-R. Sack, and R. Tamassia, editors, Proc. 5th Workshop Algorithms Data Struct., volume 1272 of LNCS, pages 331–344. Springer-Verlag, 1997.Google Scholar
  2. 2.
    S. Bridgeman, G. Di Battista, W. Didimo, G. Liotta, R. Tamassia, and L. Vismara. Optimal compaction of orthogonal representations. In CGC Workshop on Geometric Computing, 1998.Google Scholar
  3. 3.
    G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall, Upper Saddle River, NJ, 1999.zbMATHGoogle Scholar
  4. 4.
    D. Dolev and H. Trickey. On linear area embedding of planar graphs. Report cs-81-876, Stanford Univ., 1981.Google Scholar
  5. 5.
    U. Föβmeier and M. Kaufmann. Drawing high degree graphs with low bend numbers. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD’ 95), volume 1027 of LNCS, pages 254–266. Springer-Verlag, 1996.CrossRefGoogle Scholar
  6. 6.
    M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.zbMATHGoogle Scholar
  7. 7.
    F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1972.Google Scholar
  8. 8.
    F. Hoffmann and K. Kriegel. Embedding rectilinear graphs in linear time. Inform. Process. Lett., 29:75–79, 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    G. W. Klau and P. Mutzel. Quasi-orthogonal drawing of planar graphs. Technical Report MPI-I 98-1-013, Max Planck Institut für Informatik, Saarbrücken, Germany, 1998.Google Scholar
  10. 10.
    G. W. Klau and P. Mutzel. Optimal compaction of orthogonal grid drawings. In G. Cornuejols, R. E. Burkard, and G. J. Woeginger, editors, Integer Progr. Comb. Opt. (Proc. IPCO’ 99), volume 1610 of LNCS, Springer-Verlag, to appear.Google Scholar
  11. 11.
    T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. Wiley-Teubner, 1990.Google Scholar
  12. 12.
    C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA, 1994.zbMATHGoogle Scholar
  13. 13.
    M. Patrignani. On the complexity of orthogonal compaction. Technical Report RT-DIA-39-99, Dipartimento di Informatica e Automazione, Universit.a di Roma Tre, Rome, Italy, Jan. 1999.Google Scholar
  14. 14.
    R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput., 16(3):421–444, 1987.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    G. Vijayan and A. Wigderson. Rectilinear graphs and their embeddings. SIAM J. Comput., 14:355–372, 1985.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Maurizio Patrignani
    • 1
  1. 1.Dipartimento di Informatica e AutomazioneUniversità di Roma TreRomaItaly

Personalised recommendations