Skip to main content

Metaprogramming Domain Specific Metaprograms

  • Conference paper
  • First Online:
Meta-Level Architectures and Reflection (Reflection 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1616))

Included in the following conference series:

  • 207 Accesses

Abstract

When a metaprogram automatically creates rules, some created rules are useless because they can never apply. Some metarules, that we call impossibility metarules, are used to remove useless rules. Some of these metarules are general and apply to any generated program. Some are domain specific metarules. In this paper, we show how dynamic metaprogramming can be used to create domain specific impossibility metarules. Applying metaprogramming to impossibility metaprogramming avoids writing specific metaprogram for each domain metaprogramming is applied to. Our meta-metaprograms have been used to write metaprograms that write search rules for different games and planning domains. They write programs that write selective and efficient search programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. Allis, L. V.: Searching for Solutions in Games an Artificial Intelligence. Ph.D. diss., Vrije Universitat Amsterdam, Maastricht 1994.

    Google Scholar 

  2. Barklund J.: Metaprogramming in Logic. UPMAIL Technical Report No 80, Uppsala, Sweden, 1994.

    Google Scholar 

  3. Cazenave, T.: Système d’Apprentissage par Auto-Observation. Application au Jeu de Go. Ph.D. diss., Université Paris 6, 1996.

    Google Scholar 

  4. Cazenave T.: Metaprogramming Forced Moves. Proceedings ECAI98, Brigthon, 1998.

    Google Scholar 

  5. Cazenave T.: Controlled Partial Deduction of Declarative Logic Programs. ACM Computing Surveys, Special issue on Partial Evaluation, 1998.

    Google Scholar 

  6. Dejong, G. and Mooney, R.: Explanation Based Learning: an alternative view. Machine Learning 1(2), 1986.

    Google Scholar 

  7. Etzioni, O.: A structural theory of explanation-based learning. Artificial Intelligence 60(1), pp. 93–139, 1993.

    Article  MathSciNet  Google Scholar 

  8. Fotland D. and Yoshikawa A.: The 3rd fost-cup world-open computer-go championship. ICCA Journal 20(4):276–278, 1997.

    Google Scholar 

  9. Gallagher J.: Specialization of Logic Programs. Proceedings of the ACM SIGPLAN Symposium on PEPM’93, Ed. David Schmidt, ACM Press, Copenhagen, Danemark, 1993.

    Google Scholar 

  10. Gödel K.: ‘Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I’, Monatsh. Math. Phys. 38, 173–98, 1931.

    Article  MATH  MathSciNet  Google Scholar 

  11. Hill P. M. and Lloyd J. W.: The Gödel Programming Language. MIT Press, Cambridge, Mass., 1994.

    MATH  Google Scholar 

  12. Ishida T.: Optimizing Rules in Production System Programs, AAAI 1988, pp 699–704, 1988.

    Google Scholar 

  13. Laird, J.; Rosenbloom, P. and Newell A. Chunking in SOAR: An Anatomy of a General Learning Mechanism. Machine Learning 1(1), 1986.

    Google Scholar 

  14. Laird P.: Dynamic Optimization. ICML-92, pp. 263–272, 1992.

    Google Scholar 

  15. Lloyd J. W. and Shepherdson J. C.: Partial Evaluation in Logic Programming. J. Logic Programming, 11:217–242., 1991.

    Article  MATH  MathSciNet  Google Scholar 

  16. Minton S.: Is There Any Need for Domain-Dependent Control Information: A Reply. AAAI-96, 1990.

    Google Scholar 

  17. S. Minton. Automatically Configuring Constraints Satisfaction Programs: A Case Study. Constraints, Volume 1, Number 1, 1996.

    Google Scholar 

  18. Mitchell, T. M.; Keller, R. M. and Kedar-Kabelli S. T.: Explanation-based Generalization: A unifying view. Machine Learning 1(1), 1986.

    Google Scholar 

  19. Pell B.: A Strategic Metagame Player for General Chess-Like Games. Proceedings of AAAI’94, pp. 1378–1385, 1994. ISBN 0-262-61102-3.

    Google Scholar 

  20. Pettorossi, A. and Proietti, M.: A Comparative Revisitation of Some Program Transformation Techniques. Partial Evaluation, International Seminar, Dagstuhl Castle, Germany LNCS 1110, pp. 355–385, Springer 1996.

    Google Scholar 

  21. Pitrat J.: Realization of a Program Learning to Find Combinations at Chess. Computer Oriented Learning Processes, J. C. Simon editor. NATO Advanced Study Institutes Series. Series E: Applied Science-No 14. Noordhoff, Leyden, 1976.

    Google Scholar 

  22. Pitrat, J.: Métaconnaissance-Futur de l’Intelligence Artificielle. Hermès, Paris, 1990.

    Google Scholar 

  23. Pitrat, J.: Games: The Next Challenge. ICCA journal, vol. 21, No. 3, September 1998, pp.147–156, 1998.

    Google Scholar 

  24. Ram, A. and Leake, D.: Goal-Driven Learning. Cambridge, MA, MIT Press/Bradford Books, 1995.

    MATH  Google Scholar 

  25. Selman, B.; Brooks, R. A.; Dean, T.; Horvitz, E.; Mitchell, T. M.; Nilsson, N. J.: Challenge Problems for Artificial Intelligence. In Proceedings AAAI-96, 1340–1345, 1996.

    Google Scholar 

  26. Tamaki H. and Sato T.: Unfold/Fold Transformations of Logic Programs. Proc. 2nd Intl. Logic Programming Conf., Uppsala Univ., 1984.

    Google Scholar 

  27. Van den Herik, H. J.; Allis, L. V.; Herschberg, I. S.: Which Games Will Survive? Heuristic Programming in Artificial Intelligence 2, the Second Computer Olympiad (eds. D. N. L. Levy and D. F. Beal), pp. 232–243. Ellis Horwood. ISBN 0-13-382615-5. 1991.

    Google Scholar 

  28. Van Harmelen F. and Bundy A.: Explanation based generalisation = partial evaluation. Artificial Intelligence 36:401–412, 1988.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cazenave, T. (1999). Metaprogramming Domain Specific Metaprograms. In: Cointe, P. (eds) Meta-Level Architectures and Reflection. Reflection 1999. Lecture Notes in Computer Science, vol 1616. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48443-4_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-48443-4_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66280-8

  • Online ISBN: 978-3-540-48443-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics