Skip to main content

A Hamiltonian Approach to the Eikonal Equation

  • Conference paper
  • First Online:
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 1999)

Abstract

The eikonal equation and variants of it are of significant interest for problems in computer vision and image processing. It is the basis for continuous versions of mathematical morphology, stereo, shapefromshading and for recent dynamic theories of shape. Its numerical simulation can be delicate, owing to the formation of singularities in the evolving front, and is typically based on level set methods introduced by Osher and Sethian. However, there are more classical approaches rooted in Hamiltonian physics, which have received little consideration in the computer vision literature. Here the front is interpreted as minimizing a particular action functional. In this context, we introduce a new algorithm for simulating the eikonal equation, which offers a number of computational advantages over the earlier methods. In particular, the locus of shocks is computed in a robust and efficient manner. We illustrate the approach with several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Arnold. Mathematical Methods of Classical Mechanics, Second Edition. Springer-Verlag, 1989.

    Google Scholar 

  2. H. Blum. Biological shape and visual science. J. Theor. Biol., 38:205–287, 1973.

    Article  MathSciNet  Google Scholar 

  3. R. Brockett and P. Maragos. Evolution equations for continuous-scale morphology. In Proceedings of the IEEE Conference on Acoustics, Speech and Signal Processing, San Francisco, CA, March 1992.

    Google Scholar 

  4. A. R. Bruss. The eikonal equation: Some results applicable to computer vision. In B. K. P. Horn and M. J. Brooks, editors, Shape From Shading, pages 69–87, Cambridge, MA, 1989. MIT Press.

    Google Scholar 

  5. V. Caselles, J.-M. Morel, G. Sapiro, and A. Tannenbaum, editors. IEEE Transactions on Image Processing, Special Issue on PDEs and and Geometry-Driven Diffusion in Image Processing and Analysis, 1998.

    Google Scholar 

  6. M. G. Crandall, H. Ishii, and P.-L. Lions. User’s guide to viscosity solutions of second order partial differential equations. Bulletin of the American Mathematical Society, 27(1):1–67, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. D. J. Cross and E. R. Hancock. Scale-space vector fields for feature analysis. In Conference on Computer Vision and Pattern Recognition, pages 738–743, June 1997.

    Google Scholar 

  8. O. Faugeras and R. Keriven. Complete dense stereovision using level set methods. In Fifth European Conference on Computer Vision, volume 1, pages 379–393, 1998.

    Google Scholar 

  9. B. B. Kimia, A. Tannenbaum, and S. W. Zucker. Shape, shocks, and deformations I: The components of two-dimensional shape and the reaction-diffusion space. International Journal of Computer Vision, 15:189–224, 1995.

    Article  Google Scholar 

  10. R. K. Siddiqi, B. B. Kimia, and A. Bruckstein. Shape from shading: Level set propagation and viscosity solutions. International Journal of Computer Vision, 16(2):107–133, 1995.

    Article  Google Scholar 

  11. C. Lanczos. The Variational Principles of Mechanics. Dover, 1986.

    Google Scholar 

  12. R. J. LeVeque. Numerical Methods for Conservation Laws. Birkhauser Verlag, 1992.

    Google Scholar 

  13. S. Osher and C.-W. Shu. High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations. SIAM Journal of Numerical Analysis, 28:907–922, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  14. S. J. Osher and J. A. Sethian. Fronts propagating with curvature dependent speed: Algorithms based on hamilton-jacobi formulations. Journal of Computational Physics, 79:12–49, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  15. E. Rouy and A. Tourin. A viscosity solutions approach to shape-from-shading. SIAM. J. Numer. Analy., 29(3):867–884, June 1992.

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Sapiro, B. B. Kimia, R. Kimmel, D. Shaked, and A. Bruckstein. Implementing continuous-scale morphology. Pattern Recognition, 26(9), 1992.

    Google Scholar 

  17. J. Sethian. Level Set Methods: evolving interfaces in geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge, 1996.

    MATH  Google Scholar 

  18. J. A. Sethian. A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA, 93:1591–1595, February 1996.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Shah. A common framework for curve evolution, segmentation and anisotropic diffusion. In Conference on Computer Vision and Pattern Recognition, pages 136–142, June 1996.

    Google Scholar 

  20. K. Siddiqi, B. B. Kimia, and C. Shu. Geometric shock-capturing eno schemes for subpixel interpolation, computation and curve evolution. Graphical Models and Image Processing, 59(5):278–301, September 1997.

    Article  Google Scholar 

  21. K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, and S. W. Zucker. Shock graphs and shape matching. International Journal of Computer Vision, to appear, 1999.

    Google Scholar 

  22. Z. S. G. Tari, J. Shah, and H. Pien. Extraction of shape skeletons from grayscale images. Computer Vision and Image Understanding, 66:133–146, May 1997.

    Article  Google Scholar 

  23. H. Tek and B. B. Kimia. Curve evolution, wave propagation and mathematical morphology. In Fourth International Symposium on Mathematical Morphology, June 1998.

    Google Scholar 

  24. R. van den Boomgaard. Mathematical morphology: extensions towards computer vision. Ph.D. dissertation, University of Amsterdam, March 1992.

    Google Scholar 

  25. R. van den Boomgaard and A. Smeulders. The morphological structure of images: The differential equations of morphological scale-space. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(11):1101–1113, November 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siddiqi, K., Tannenbaum, A., Zucker, S.W. (1999). A Hamiltonian Approach to the Eikonal Equation. In: Hancock, E.R., Pelillo, M. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 1999. Lecture Notes in Computer Science, vol 1654. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48432-9_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-48432-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66294-5

  • Online ISBN: 978-3-540-48432-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics