On Channel Capacity and Modulation of Watermarks in Digital Still Images

  • Markus Breitbach
  • Hideki Imai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1648)


An adversary who knows a watermarking scheme can extract the watermarked coefficients and attack them directly. This situation can be understood in a similar way to jamming as known from military communications and system performance can be described in terms of channel capacity and distortion. Using a gradient method, the attack is optimized from the adversary’s viewpoint by minimizing channel capac- ity. It turns out that then for the same level of distortion and equiproba- ble modulation symbols binary modulation can achieve a higher channel capacity than modulation alphabets of larger size.


Copyright protection Watermarking Fingerprinting Jamming Channel Capacity Modulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Hegde, W.W. Stark, D. Teneketzis: On the Capacity of Channels with Unknown Interference. IEEE Trans. Inform. Theory, vol. 35, no. 4, July 1989, pp. 770–782zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    J.J.K.Ó Ruanaidh, W.J. Dowling, F.M. Boland: Watermarking Digital Images for Copyright Protection. IEE Proceedings on Vision, Signal and Image Processing, vol. 143, no. 4, Aug. 1996, pp. 250–256CrossRefGoogle Scholar
  3. 3.
    I.J. Cox, J. Kilian, T. Leighton, T. Shamoon: Secure Spread Spectrum Watermarking for Multimedia. IEEE Trans. on Image Processing, vol. 6, no. 12, 1997, pp. 1673–1687CrossRefGoogle Scholar
  4. 4.
    B. Tao, B. Dickinson: Adaptive Watermarking in the DCT Domain. Proc. Int. Conf. Accoustics, Speech, Signal Processing, 1997Google Scholar
  5. 5.
    C.I. Podilchuk, W. Zeng: Perceptual Watermarking of Still Images. Proc. First IEEE Signal Processing Society Workshop on Multimedia Signal Processing, June 1997, Princeton, New JerseyGoogle Scholar
  6. 6.
    B. Girod: The Information Theoretical Significance of Spatial and Temporal Masking in Video Signals. Proceedings of the SPIE, Human Vision, Visual Processing, and Digital Display, vol. 1077, pp. 178–187, 1989Google Scholar
  7. 7.
    F.A.P. Petitcolas, R.J. Anderson, M.G. Kuhn: Attacks on Copyright Marking Schemes. Proc. 2nd Workshop on Information Hiding, Portland / Oregon, April 1998; Springer Verlag, Lecture Notes in Computer Science, vol. 1525, pp.219–239CrossRefGoogle Scholar
  8. 8.
    D. Boneh, J. Shaw: Collusion/Secure Fingerprinting for Digital Data. IEEE Trans. Inform. Theory, vol. 44, no. 5, 1998, pp. 1897–1905zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    J. Löfvenberg, N. Wiberg: Random Codes for Digital Fingerprinting. Proc. ISIT’ 98, Cambridge, MA, USA, Aug. 16–21, 1998, p. 80Google Scholar
  10. 10.
    J. Kilian, F.T. Leighton, L.R. Matheson, T.G. Shamoon, R.E. Tarjan, F. Zane: Resistance of Digital Watermarks to Collusive Attacks. Proc. ISIT’;98, Cambridge, MA, USA, Aug. 16–21, 1998, p. 271Google Scholar
  11. 11.
    M.D. Swanson, M. Kobayashi, A.H. Tewfik: Multimedia Data-Embedding and Watermarking Techniques. Proceedings of the IEEE, vol. 86, no. 6, June 1998, pp. 1064–1087CrossRefGoogle Scholar
  12. 12.
    J.G. Proakis: Digital Communications. Third edition, McGraw-Hill, 1995Google Scholar
  13. 13.
    W.B. Pennebaker, J.L. Mitchell: JPEG Still Image Data Compression Standard. Chapman & Hall, New York, 1993Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Markus Breitbach
    • 1
  • Hideki Imai
    • 1
  1. 1.Third DepartmentInstitute of Industrial Science, University of TokyoTokyoJapan

Personalised recommendations