Skip to main content

A Predication Calculus for Qualitative Spatial Representations

  • Conference paper
  • First Online:
Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science (COSIT 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1661))

Included in the following conference series:

Abstract

Spatial information is information bound to spatial entities such as regions. It is based on the spatial structure alone (the valley includes the field) or connects thematic predicates with spatial entities (Joan Smith owns the field). Formal models of spatial information are concerned with the question of how the structure of space is related to inferences about spatial information. Therefore, in addition to formal models of the structure of space, formal models of the interrelation between thematic information and spatial entities have to be developed. This article addresses the relation between regions and thematic information. It presents a calculus of spatial predicators that is coping with qualitative distinctions, i.e., the mereological and topological structure of space. The spatial structure is given by the Closed Region Calculus, which provides the same terminology as RCC, but has finite models. The spatial predication calculus specifies the interaction of the spatial structure with the thematic information and provides a flexible tool for the representation of and inferences on spatial information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, J.F. (1984), Towards a general theory of action and time. Artificial Intelligence 23. 123–154.

    Google Scholar 

  • Brachman, R.J. (1977), What’s in a concept: structural foundations for semantic networks. International Journal of Man-Machine Studies 9. 127–152.

    Google Scholar 

  • Clarke, B.L. (1981), A calculus of individuals based on ‘connection’. Notre Dame Journal of Formal Logic 22. 204–218.

    Google Scholar 

  • Comrie, B. (1976), Aspect. Cambridge: Cambridge University Press.

    Google Scholar 

  • Egenhofer, M.J. (1991), Reasoning about binary topological relations. In O. Günther & H.-J. Schek (eds.), Advances in Spatial Databases (pp. 143-160). New York, NY: Springer.

    Google Scholar 

  • Eschenbach, C. (1993), Semantics of number. Journal of Semantics 10. 1–31.

    Google Scholar 

  • Eschenbach, C. (1995), Zählangaben-Mäßangaben. Wiesbaden: Deutscher Universitätsverlag.

    Google Scholar 

  • Eschenbach, C. & W. Heydrich (1995), Classical mereology and restricted domains. International Journal of Human-Computer Studies 43. 723–740.

    Google Scholar 

  • Galton, A. (1984), The Logic of Aspect. An Axiomatic Approach. Oxford: Clarendon Press.

    Google Scholar 

  • Galton, A. (1990), A critical examination of Allen’s theory of action and time. Artificial Intelligence 42. 159–188.

    Google Scholar 

  • Gotts, N.M., J.M. Gooday & A.G. Cohn (1996), A connection based approach to commonsense topological description and reasoning. The Monist 79. 51–75.

    Google Scholar 

  • Horn, L.R. (1989), A Natural History of Negation. Chicago: University of Chicago Press.

    Google Scholar 

  • Krifka, M. (1989), Nominalreferenz und Zeitkonstitution. München: Finke.

    Google Scholar 

  • Le’sniewski, S. (1927-30), O podstawach matematyki. Przeglad Filozoficzny 30, 164–206. 31, 261-291. 32, 60-101. 33 75-105, 142-170.

    Google Scholar 

  • Le’sniewski, S. (1982), On the foundations of mathematics. Topoi 2. 7–52. (abridged English translation of’ O podstawach matematyki)’.

    Google Scholar 

  • Link, G. (1983), The logical analysis of plurals and mass terms: A lattice-theoretical approach. In R. Bäuerle, Ch. Schwarze & A. von Stechow (eds.), Meaning, Use and Interpretation of Language (pp. 302–323. Berlin: de Gruyter.

    Google Scholar 

  • Löbner, S. (1990), Wahr neben Falsch. Duale Operatoren als die Quantoren natürlicher Sprache. Tübingen: Niemeyer.

    Google Scholar 

  • McDermott, D. (1982), A temporal logic for reasoning about processes and plans. Cognitive Science 6. 101–155.

    Google Scholar 

  • Randell, D.A., Z. Cui & A.G. Cohn., (1992), A spatial logic based on regions and connection. In Principles of Knowledge Representation and Reasoning, KR-92 (pp. 165–176). Boston: Morgan Kaufmann.

    Google Scholar 

  • Shoham, Y. (1987), Temporal logics in AI: Semantical and ontological considerations. Artificial Intelligence 33. 89–104.

    Google Scholar 

  • Simons, P. (1987), Parts. A Study in Ontology. Oxford: Clarendon Press.

    Google Scholar 

  • Timpf, S. & A.U. Frank, (1997), Using hierarchical spatial data structures for hierarchical spatial reasoning. In S.C. Hirtle & A.U. Frank (eds.), Spatial Information Theory. A Theoretical Basis for GIS. Proceedings of COSIT’97 (pp. 69–83). Berlin: Springer.

    Chapter  Google Scholar 

  • Varzi, Achille C. (1996), Parts, wholes, and part-whole relations: The prospects of mereotopology. Data & Knowledge Engineering 20. 259–286.

    Google Scholar 

  • Vieu, L. (1993), A logical framework for reasoning about space. In A.U. Frank & I. Campari (eds.), Spatial Information Theory. A Theoretical Basis for GIS. Proceedings of COSIT’93 (pp. 25–35). Berlin: Springer.

    Google Scholar 

  • Whitehead, A.N. (1929), Process and Reality. An Essay in Cosmology. New York: The Macmillan Co. (Corrected edition, D.R. Griffin & D.W. Sherburne (eds.) (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eschenbach, C. (1999). A Predication Calculus for Qualitative Spatial Representations. In: Freksa, C., Mark, D.M. (eds) Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science. COSIT 1999. Lecture Notes in Computer Science, vol 1661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48384-5_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-48384-5_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66365-2

  • Online ISBN: 978-3-540-48384-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics