Advertisement

Evaluating the Complexity of Databases for Person Identification and Verification

  • G. Thimm
  • S. Ben-Yacoub
  • J. Luettin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1689)

Abstract

Databases play an important role for the development and evaluation of methods for person identification, verification, and other tasks. Despite this fact, there exists no measure that indicates whether a given database is sufficient to train and/or to test a given algorithm. This paper proposes a method to rank the complexity of databases, respectively to validate whether a database is appropriate for the simulation of a given application. The first nearest neighbor and the mean square distance are validated to be suitable as minimal performance measures with respect to the problems of person verification and person identification.

Keywords

Person identification person verification database evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Ackermann: Bern data base (1995). Anonymous ftp://iamftp.unibe.ch/pub/Images/FaceImages/55 Evaluating the Complexity of Databases for Person Identification and Verification
  2. 2.
    Y. Adini, Y. Moses, and S. Ullman: Face recognition: The problem of compensating for changes in illumination direction, IEEE Trans. on Pattern Analysis and Machine Intelligence 19 (July 1997) 721–732.CrossRefGoogle Scholar
  3. 3.
    IEEE Int. Conf. on Automatic Face and Gesture Recognition, Killington, Vermont, IEEE (October 14–16, 1998).Google Scholar
  4. 4.
    IEEE Proc. of the Second Int. Conf. on Automatic Face and Gesture Recognition, Nara, Japan, IEEE (April 14–16 1998).Google Scholar
  5. 5.
    P. N. Belhumeur and D. J. Kriegman: The Yale face database (1997). http://giskard.eng.yale.edu/yalefaces/yalefaces.html.
  6. 6.
    J. Bigün, G. Chollet, and G. Borgefors, eds.: Audio-and Video-based Biometric Person Authentication (AVBPA'97), Lecture Notes in Computer Science 1206, Crans-Montana, Switzerland, Springer (March 1997).Google Scholar
  7. 7.
    H. Burkhardt and B. Neumann, eds.: Computer Vision — ECCV'98, II of Lecture Notes in Computer Science 1406, Freiburg, Germany, Springer (June 1998).Google Scholar
  8. 8.
    IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR-96), San Francisco, California (June 18—20, 1996).Google Scholar
  9. 9.
    P. Kruizinga: The face recognition home page. http://www.cs.rug.nl/~peterkr/FACE/face.html.
  10. 10.
    K.-M. Lam and H. Yan: An analytic-to-holistic approach for face recognition on a single frontal view, IEEE Trans. on Pattern Analysis and Machine Intelligence 20 (July 1998) 673–689.CrossRefGoogle Scholar
  11. 11.
    S. Lawrence, C.L. Giles, A.C. Tsoi, and A.D. Back: Face recognition: a convolutional neural-network approach, IEEE Trans. on Neural Networks 8 (1997) 98–113.CrossRefGoogle Scholar
  12. 12.
    S.Z. Li and J. Lu: Generalized capacity of face database for face recognition, in [4] 402–405.Google Scholar
  13. 13.
    K. Messer, J. Matas, J. Kittler, J. Luettin, and G. Maitre: XM2VTSDB: The extended m2vts database, in Proc. Second Int. Conf. on Audio-and Video-based Biometric Person Authentication (AVBPA'99) (1999). http://www.ee.surrey.ac.uk/research/vssp/xm2vts
  14. 14.
    Y. Moses: Weizmann institute database (1997). Anonymous ftp://ftp.eris.weizmann.ac.il/pub/FaceBase.
  15. 15.
    A.R. Mirhosseini, H. Yan, K.-M. Lam, and T. Pham: Human face image recognition: An evidence aggregation approach, Computer Vision and Image Understanding 71 (August 1998) 213–230.CrossRefGoogle Scholar
  16. 16.
    A. V. Nefian and M. H. HayesIII: Hidden markov models for face recognition, in ICASSP'98 5, IEEE (1998) 2721–2724.Google Scholar
  17. 17.
    S. Pigeon and L. Vandendorpe: The M2VTS multimodal face database, in J. Bigün, G. Chollet, and G. Borgefors, eds.: Audio-and Video-based Biometric Person Authentication (AVBPA'97), Lecture Notes in Computer Science 1206, Crans-Montana, Switzerland, Springer (March 1997) [6].Google Scholar
  18. 18.
    P. Phillips, H. Wechsler, J. Huang, and P. Rauss: The FERET database and evaluation procedure for face recognition algorithms. To appear in: Image and Vision Computing Journal (1998).Google Scholar
  19. 19.
    F. Samaria and A. Harter: Parameterization of a stochastic model for human face identification, in Proc. of 2nd IEEE Workshop on Applications of Computer Vision, Sarasota, FL (1994). http://www.cam-orl.co.uk/facedatabase.html.
  20. 20.
    F. S. Samaria: Face Recognition using Hidden Markov Models. PhD thesis, Trinity College, University of Cambridge, Cambridge (1995).Google Scholar
  21. 21.
    W. Shen, M. Surette, and R. Khanna: Evaluation of automated biometrics-based identification and verification systems, Proc. of the IEEE 85 (September 1997) 1464.CrossRefGoogle Scholar
  22. 22.
    M. Turk and A. Pentland: Eigenfaces for recognition, Journal of Cognitive Neuroscience 3:1 (1991) 71–96. ftp://whitechapel.media.mit.edu/pub/images/.CrossRefGoogle Scholar
  23. 23.
    J. Zhang, Y. Yan, and M. Lades: Face recognition: Eigenface, elasic matching, and neural nets, Proc. of the IEEE: Automated Biometric Systems 85 (1997) 1423–1435.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • G. Thimm
    • 1
  • S. Ben-Yacoub
    • 1
  • J. Luettin
    • 1
  1. 1.IDIAP, CP 592MartignySwitzerland

Personalised recommendations