Advertisement

Multinuclear NMR study on the sol-gel transition of gellan gum

  • M. AnnakaEmail author
  • J.-I. Honda
  • T. Nakahira
  • H. Seki
  • M. Tokita
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 114)

Abstract

A multinuclear NMR study was carried out to study the interaction between group I cations (Na+, K+, and Rb+) and gellan gum. It was found that the NMR parameters of 39K and 87Rb ions undergo an abrupt change in the vicinity of the sol-gel transition temperature. On the other hand, the NMR parameters of 23Na do not show any singular behavior. These results suggest that 39K and 87Rb ions (so-called gel-forming cations) selectively interact with gellan gum.

Key words

Gellan gum Sol-gel transition Group I cation Multinuclear NMR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jansson P, Lindberg Sandford PA (1983) Carbohydr Res 124: 135CrossRefGoogle Scholar
  2. 2.
    O’Neill MA, Selvenderan RR, Morris VJ (1983) Carbohydr Res 124: 123CrossRefGoogle Scholar
  3. 3.
    Rees DA (1981) Pure Appl Chem 53: 1CrossRefGoogle Scholar
  4. 4.
    Grasdalen H, Smidsrod O (1981) Macromolecules 14: 229CrossRefGoogle Scholar
  5. 5.
    Paoletti S, Delben F, Cesaro A, Grasdalen H (1985) Macromolecules 7: 53CrossRefGoogle Scholar
  6. 6.
    Belton PS, Morris VJ, Tannnar SF (1986) Macromolecules 19: 1618CrossRefGoogle Scholar
  7. 7.
    Bloembergen N, Purcell EM, Pound RV (1948) Phys Rev 73: 679CrossRefGoogle Scholar
  8. 8.
    Stover HDH, Detellier C (1989) J Phys Chem 93: 3173CrossRefGoogle Scholar
  9. 9.
    Shungu DC, Briggs RW (1988) J Magn Reson 77: 491Google Scholar
  10. 10.
    Dviryantsev SN (1989) Biol Membr 6: 5Google Scholar
  11. 11.
    Eggert H, Dinesen J, Jacobsen PJ (1989) Biochemistry 28: 3332CrossRefGoogle Scholar
  12. 12.
    Templeman GJ, van Geet AL (1972) J Am Chem Soc 94: 5578CrossRefGoogle Scholar
  13. 13.
    Schmidt E, Popov AI (1983) J Am Chem Soc 105: 1873CrossRefGoogle Scholar
  14. 14.
    Urry DW, Trapane TL, Vankatachalam CM (1986) J Membr Biol 89: 107CrossRefGoogle Scholar
  15. 15.
    Braunlin WH, Nordenskioeld L (1984) Eur J Biochem 143: 133CrossRefGoogle Scholar
  16. 16.
    Deverall C, Ridhards RE (1966) Mol Phys 10: 551CrossRefGoogle Scholar
  17. 17.
    Khazaeli S, Dye JL, Popov AI (1983) Spectrochim Acta. Part A 39: 19CrossRefGoogle Scholar
  18. 18.
    McLachlan AD (1964) Proc R Soc Lond Ser A 280: 271CrossRefGoogle Scholar
  19. 19.
    Carrington A, Luckhurst GR (1964) Mol Phys 8: 125CrossRefGoogle Scholar
  20. 20.
    Hubbard PS (1970) J Chem Phys 53: 985CrossRefGoogle Scholar
  21. 21.
    Jaccard G, Wimperis S, Bodenhausen G (1986) J Chem Phys 85: 6282CrossRefGoogle Scholar
  22. 22.
    Rooney WD, Barbara TM, Springer CS (1988) J Am Chem Soc 110: 674CrossRefGoogle Scholar
  23. 23.
    Quinn FX, McBrierty VJ, Wilson AC, Friends GD (1990) Macromolecules 23: 4576CrossRefGoogle Scholar
  24. 24.
    Dentini M, Coviello T, Burchard W, Crescenz V (1988) Macromolecules 21: 3312CrossRefGoogle Scholar
  25. 25.
    Gunning AP, Kirby AR, Rodout AR, Brownsey GJ, Morris VJ (1996) Macromolecules 29: 6791CrossRefGoogle Scholar
  26. 26.
    Nishinari K (1997) Colloid Polym Sci 275: 1093CrossRefGoogle Scholar
  27. 27.
    Eldrige JE, Ferry JD (1954) J Phys Chem 58: 992CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • M. Annaka
    • 1
    Email author
  • J.-I. Honda
    • 1
  • T. Nakahira
    • 1
  • H. Seki
    • 2
  • M. Tokita
    • 3
  1. 1.Department of Applied ChemistryChiba UniversityChibaJapan
  2. 2.Chemical Analysis CenterChiba UniversityChibaJapan
  3. 3.Department of Chemistry for MaterialsMie UniversityMieJapan

Personalised recommendations