Advertisement

A polynomial time approximation scheme for dense MupIN 2S{upAT}

  • Cristina Bazgan
  • W. de la Fernandez Vega
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1684)

Abstract

It is proved that everywhere-dense MupIN 2SupAT and everywhere- dense MupIN EupQ both have polynomial time approximation schemes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Arora, D. Karger, M. Karpinski, Polynomial time approximation schemes for dense instances of NP-hard problems, Proc. of 27th STOC, 1995, 284–293. The full paper will appear in Journal of Computer and System Sciences.Google Scholar
  2. 2.
    W. Fernandez de la Vega, Max-Cut has a Randomized Approximations Scheme in Dense Graphs, Random Structures and Algorithms, 8(3) (1996), 187–198.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    N. Garg, V. V. Vazirani and M. Yannakakis, Approximate max-flow min-(multi)cut theorems and their applications, SIAM Journal on Computing 25 (1996), 235–251.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    O. Goldreich, S. Goldwasser and D. Ron, Property Testing and its Connection to Learning and Approximation, Proc. of 37th IEEE FOCS, 1996, 339–348. The full paper has appeared in Journal of the ACM, 45 (4) (1998), 653–750.Google Scholar
  5. 5.
    M. Karpinski, Polynomial Time Approximation Schemes for Some Dense Instances of NP-Hard Optimization Problems, Randomization and Approximation Techniques in Computer Science, LNCS 1269, 1–14.Google Scholar
  6. 6.
    C. Papadimitriou and M. Yannakakis, Optimization, Approximation and Complexity Classes, Journal of Computer and System Science 43 (1991), 425–440.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Cristina Bazgan
    • 1
  • W. de la Fernandez Vega
    • 2
  1. 1.Universitè Paris-Sud, LRIOrsayFrance
  2. 2.CNRS, UMR 8623, Universitè Paris-Sud, LRIOrsayFrance

Personalised recommendations