Deriving formulas for domination numbers of fasciagraphs and rotagraphs

  • Janez Žerovnik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1684)


Recently, an algebraic approach which can be used to compute distance-based graph invariants on fasciagraphs and rotagraphs was given in [Mohar, Juvan, Žerovnik, Discrete Appl. Math. 80 (1997) 57–71]. Here we give an analogous method which can be employed for deriving formulas for the domination number of fasciagraphs and rotagraphs. In other words, it computes the domination numbers of these graphs in constant time, i.e. in time which depends only on the size and structure of a monograph and is independent of the number of monographs. Some further generalizations of the method are discussed, in particular the computation of the independent number and the k-coloring decision problem. Examples of fasciagraphs and rotagraphs include complete grid graphs. Grid graphs are one of the most frequently used model of processor interconnections in multiprocessor VLSI systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Arnborg, Efficient algorithms for combinatorial problems on graphs with bounded decomposability — a survey, BIT 25 (1985) 2–23.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    S. Arnborg and A. Proskurowski, Linear time algorithms for NP-hard problems on graphs embedded in k-trees, TRITA-NA-8404, Dept. of Num. Anal. and Comp. Sci, Royal Institute of Technology, Stockholm, Sweden (1984).Google Scholar
  3. 3.
    D. Babić, A. Graovac, B. Mohar and T. Pisanski, The matching polynomial of a polygraph, Discrete Appl. Math. 15 (1986) 11–24.CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    F. Baccelli, G. Cohen, G. J. Olsder and J. P. Quadrat, Synchronization and Linearity (Wiley, 1992).Google Scholar
  5. 5.
    B. Carrè, Graphs and Networks (Clarendon Press, Oxford, 1979).zbMATHGoogle Scholar
  6. 6.
    T.Y. Chang, Domination Numbers of Grid GRaphs, Ph.D. Thesis, Dept. of Mathematics, Univ. of South Florida, 1992.Google Scholar
  7. 7.
    T.Y. Chang and W.E. Clark, The domination numbers of the 5 × n and 6 × n grid graphs, J. Graph Theory 17 (1993) 81–107.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    B.N. Clark, C.J. Colbourn and D.S. Johnson, Unit disc graphs, Discrete Math. 86 (1990) 165–177.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    E.J. Cockayne, E.O. Hare, S.T. Hedetniemi and T.V. Wimer, Bounds for the domination number of grid graphs, Congr. Numer. 47 (1985) 217–228.MathSciNetGoogle Scholar
  10. 10.
    D.C. Fisher, The domination number of complete grid graphs, J. Graph Theory, submitted.Google Scholar
  11. 11.
    A. Graovac, M. Juvan, B. Mohar, S. Vesel and J. Žerovnik, The Szeged index of polygraphs, in preparation.Google Scholar
  12. 12.
    A. Graovac, M. Juvan, B. Mohar and J. Žerovnik, Computing the determinant and the algebraic structure count on polygraphs, submitted.Google Scholar
  13. 13.
    S. Gravier and M. Mollard, On domination numbers of Cartesian product of paths, Discrete Appl. Math. 80 (1997) 247–250.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    I. Gutman, N. Kolaković, A. Graovac and D. Babić, A method for calculation of the Hosoya index of polymers, in: A. Graovac, ed., Studies in Physical and Theoretical Chemistry, vol. 63 (Elsevier, Amsterdam, 1989) 141–154.Google Scholar
  15. 15.
    I. Gutman, Formula for the Wiener Number of trees and its extension to graphs containing cycles, Graph Theory Notes New York 27 (1994) 9–15.Google Scholar
  16. 16.
    E.O. Hare, S.T. Hedetniemi and W.R. Hare, Algorithms for computing the domination number of k × n complete grid graphs, Congr. Numer. 55 (1986) 81–92.MathSciNetGoogle Scholar
  17. 17.
    S.T. Hedetniemi and R.C. Laskar, Introduction, Discrete Math. 86 (1990) 3–9.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    M.S. Jacobson and L.F. Kinch, On the domination number of products of graphs: I, Ars Combin. 18 (1983) 33–44.MathSciNetGoogle Scholar
  19. 19.
    M.S. Jacobson and L.F. Kinch, On the domination of the products of graphs II: trees, J. Graph Theory 10 (1986) 97–106.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    M. Juvan, B. Mohar, A. Graovac, S. Klavžar and J. Žerovnik, Fast computation of the Wiener index of fasciagraphs and rotagraphs, J. Chem. Inf. Comput. Sci.s 35 (1995) 834–840.Google Scholar
  21. 21.
    M. Juvan, B. Mohar and J. Žerovnik, Distance-related invariants on polygraphs, Discrete Appl. Math. 80 (1997) 57–71.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    S. Klavžar and N. Seifter, Dominating Cartesian products of cycles, Discrete Appl. Math. 59 (1995) 129–136.CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    S. Klavžar and J. Žerovnik, Algebraic approach to fasciagraphs and rotagraphs, Discrete Appl. Math. 68 (1996) 93–100.CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    J. van Leeuwen, Graph algorithms, in: J. van Leeuwen, ed., Handbook of Theoretical Computer Science, Volume A, Algorithms and Complexity (Elsevier, Amsterdam, 1990) 525–631.Google Scholar
  25. 25.
    Livingston and Stout, 25th Int. Conf. on Combinatorics, Graph Theory and Computing, Boca Racon, FL, 1994.Google Scholar
  26. 26.
    M. Petkovšek, A. Vesel and J. Žerovnik, Computing the Szeged index of fasciagraphs and rotagraphs using Mathematica, manuscript in preparation.Google Scholar
  27. 27.
    N. Robertson and P.D. Seymour, Graph minors II. Algorithmic aspects of tree-width, J. Algorithms, 7 (1986) 309–322.zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    W.A. Seitz, D.J. Klein and A. Graovac, Transfer matrix methods for regular polymer graphs, in: R.C. Lacher, ed., Studies in Physical and Theoretical Chemistry, vol. 54 (Elsevier, Amsterdam, 1988) 157–171.Google Scholar
  29. 29.
    J.A. Telle, Complexity of domination-type problems in graphs, Nordic Journal of Computing 1 (1994) 157–171.MathSciNetGoogle Scholar
  30. 30.
    J.A. Telle and A. Proskurowski, Practical algorithms on partial k-trees with an application to domination-like problems, Lecture Notes in Computer Science 709 (1993) 610–621.Google Scholar
  31. 31.
    A. Wongseelashote, Semirings and path spaces, Discrete Math. 26 (1979) 55–78.zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    U. Zimmermann, Linear and Combinatorial Optimization in Ordered Algebraic Structures (Ann. Discrete Math. 10, North Holland, Amsterdam, 1981).Google Scholar
  33. 33.
    H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69 (1947) 17–20.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Janez Žerovnik
    • 1
    • 2
  1. 1.Faculty of Mechanical EngineeringUniversity of MariborMariborSlovenia
  2. 2.Department of Theoretical Computer ScienceInstitute of Mathematics, Physics and MechanicsLjubljanaSlovenia

Personalised recommendations