Advertisement

On two-sided infinite fixed points of morphisms

  • Jeffrey Shallit
  • Ming-wei Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1684)

Abstract

Let Σ be a finite alphabet, and let h : Σ* → Σ* be a morphism. Finite and infinite fixed points of morphisms — i.e., those words w such that h(w) = w — play an important role in formal language theory. Head characterized the finite fixed points of h, and later, Head and Lando characterized the one-sided infinite fixed points of h. Our paper has two main results. First, we complete the characterization of fixed points of morphisms by describing all two-sided infinite fixed points of h, for both the “pointed” and “unpointed” cases. Second, we completely characterize the solutions to the equation h(xy) = yx in finite words.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.-P. Allouche. Automates finis en thèorie des nombres. Exposition. Math. 5 (1987), 239–266.zbMATHMathSciNetGoogle Scholar
  2. 2.
    D. Beaquier. Ensembles reconnaissables de mots bi-infinis. In M. Nivat and D. Perrin, editors, Automata on Infinite Words, Vol. 192 of Lecture Notes in Computer Science, pp. 28–46. Springer-Verlag, 1985.Google Scholar
  3. 3.
    J. Berstel. Axel Thue’s Papers on Repetitions in Words:a Translation. Number 20 in Publications du Laboratoire de Combinatoire et d’Informatique Mathèmatique. Universitè du Quèbec à Montrèal, February 1995.Google Scholar
  4. 4.
    A. Cobham. On the Hartmanis-Stearns problem for a class of tag machines. In IEEE Conference Record of 1968 Ninth Annual Symposium on Switching and Automata Theory, pp. 51–60, 1968. Also appeared as IBM Research Technical Report RC-2178, August 23 1968.Google Scholar
  5. 5.
    L. E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with distinct factors. Amer. J. Math. 35 (1913), 413–422.CrossRefMathSciNetGoogle Scholar
  6. 6.
    D. Hawkins and W. E. Mientka. On sequences which contain no repetitions. Math. Student 24 (1956), 185–187.MathSciNetGoogle Scholar
  7. 7.
    T. Head. Fixed languages and the adult languages of 0L schemes. Internat. J. Comput. Math. 10 (1981), 103–107.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    T. Head and B. Lando. Fixed and stationary w-words and w-languages. In G. Rozenberg and A. Salomaa, editors, The Book of L, pp. 147–156. Springer-Verlag, 1986.Google Scholar
  9. 9.
    J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.Google Scholar
  10. 10.
    D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, 1995.Google Scholar
  11. 11.
    M. Nivat and D. Perrin. Ensembles reconnaissables de mots biinfinis. Canad. J. Math. 38 (1986), 513–537.zbMATHMathSciNetGoogle Scholar
  12. 12.
    A. Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912), 1–67. Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, editor, Universitetsforlaget, Oslo, 1977, pp. 413–478.Google Scholar
  13. 13.
    M.-w. Wang and J. Shallit. An inequality for non-negative matrices. Linear Algebra and Its Applications 290 (1999), 135–144.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Jeffrey Shallit
    • 1
  • Ming-wei Wang
    • 1
  1. 1.Department of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations