Advertisement

Generalized synchronization languages

  • Isabelle Ryl
  • Yves Roos
  • Mireille Clerbout
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1684)

Abstract

Generalized synchronization languages are a model used to describe the behaviors of distributed applications whose synchronization constraints are expressed by generalized synchronization expressions — an extension of synchronization expressions. Generalized synchronization languages were conjectured by Salomaa and Yu to be characterized by a semi-commutation. We show that this semi-commutation characterizes the images of generalized synchronization languages by a morphism-like class of rational functions.

Topics. Automata and formal languages, theory of parallel and distributed computation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cori, R., Sopena, E., Latteux, M., and Roos, Y. 2-asynchronous automata. Theoretical Computer Science 61 (1988), 93–102.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    De Simone, R. Langages infinitaires et produit de mixage. Theoretical Computer Science 31 (1984), 83–100.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Diekert, V., and Rozenberg, G., Eds. The Book of Traces. World Scientific, Singapore, 1995.Google Scholar
  4. 4.
    Diekert, V., Y. Mètivier, Partial Commutation and Traces. Handbook of Formal Languages (1997), 457–533.Google Scholar
  5. 5.
    Duboc, C.Commutations dans les Monoïdes libres: un Cadre Thèorique pour l’Ètude du Parallèlisme. PhD thesis, Universitè de Rouen, 1986.Google Scholar
  6. 6.
    Govindarajan, R., Guo, L., Yu, S., and Wang, P. ParC project: Practical constructs for parallel programming languages. In Proc. IEEE 15th Annual Internationnal Computer Software & Applications Conference (1991), pp. 183–189.Google Scholar
  7. 7.
    Mètivier, Y. Contribution à l’ètude des monoïdes de commutations. Thèse d’ètat, Universitè de Bordeaux I, 1987.Google Scholar
  8. 8.
    Roos, Y.Contribution à l’Ètude des Fonctions de Commutation Partielle. PhD thesis, Universitè des Sciences et Technologies de Lille, Lille, France, 1989.Google Scholar
  9. 9.
    Ryl, I., Roos, Y., and Clerbout, M. About synchronization languages. In Proc. MFCS’98 (Brno, Czech Republic, 1998), LNCS 1450, Springer-Verlag, Berlin, pp. 533–542.Google Scholar
  10. 10.
    Salomaa, K., and Yu, S. Synchronization expressions with extended join operation. Theoretical Computer Science 207 (1998), 73–88.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Sassone, V., Nielsen, M., and Winskel, G. Models for concurrency: Towards a classification. Theoretical Computer Science 170, 1-2 (1996), 297–348.zbMATHMathSciNetGoogle Scholar
  12. 12.
    van Glabbeck, R. J., and Vaandrager, F. The difference between splitting in n and n + 1. Information and Computation 136, 2 (1997), 109–142.CrossRefMathSciNetGoogle Scholar
  13. 13.
    Zielonka, W. Notes on finite asynchronous automata. R.A.I.R.O. — Theoretical Informatics and Applications 21, 2 (1987), 99–135.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Isabelle Ryl
    • 1
  • Yves Roos
    • 1
  • Mireille Clerbout
    • 1
  1. 1.C.N.R.S. U.R.A. 369, L.I.F.L. Universitè de Lille IVilleneuve d’Ascq CedexFrance

Personalised recommendations