Advertisement

State and transition complexity of Watson-Crick finite automata

  • Andrei Păun
  • Mihaela Păun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1684)

Abstract

We consider the number of states and the number of transitions in Watson-Crick finite (non-deterministic) automata as descriptional complexity measures. The succinctness of recognizing regular languages by Watson-Crick (arbitrary or 1-limited) automata in comparison with non-deterministic finite automata is investigated, as well as decidability and computability questions. Major differences are found between finite automata and Watson-Crick finite automata from both these points of view.

Keywords

Transition Rule Transition Complexity Regular Language Finite Automaton Descriptional Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Câmpeanu, N. Sântean, S. Yu, Minimal cover-automata for finite languages, International Workshop on Implementing Automata, WIA 98, Rouen, 1998, 32–42.Google Scholar
  2. 2.
    J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer-Verlag, Berlin, 1989.Google Scholar
  3. 3.
    J. Engelfriet, G. Rozenberg, Fixed point languages, equality languages, and representations of recursively enumerable languages, Journal of the ACM, 27 (1980), 499–518.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    R. Freund, Gh. Păun, G. Rozenberg, A. Salomaa, Watson-Crick finite automata, Proc. of the Third Annual DIMACS Symp. on DNA Based Computers, Philadelphia, 1997, 305–317.Google Scholar
  5. 5.
    R. Freund, Gh. Păun, G. Rozenberg, A. Salomaa, Watson-Crick automata, Technical Report 97-13, Dept. of Computer Sci., Leiden Univ., 1997.Google Scholar
  6. 6.
    J. Gruska, Descriptional complexity of context-free languages, Proc. MFCS’ 73, High Tatras, 1973, 71–83.Google Scholar
  7. 7.
    J. Hromkovic, One-way multihead deterministic finite automata, Acta Informatica, 19, 4 (1983), 377–384.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    O. H. Ibarra, C. E. Kim, On 3-head versus 2-head finite automata, Inform. Control, 4 (1975), 193–200.zbMATHMathSciNetGoogle Scholar
  9. 9.
    Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing Paradigms, Springer-Verlag, Heidelberg, 1998.zbMATHGoogle Scholar
  10. 10.
    A. L. Rosenberg, On multihead finite automata, IBM J. R. and D., 10 (1966), 388–394.zbMATHCrossRefGoogle Scholar
  11. 11.
    G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, Springer-Verlag, Heidelberg, 1997.zbMATHGoogle Scholar
  12. 12.
    K. Salomaa, S. Yu, Q. Zhuang, The state complexities of some basic operations on regular languages, Theoretical Computer Sci., 125 (1994), 315–328.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    S. Yu, Regular languages, Chapter 2 in vol. 1 of [11], 41–110.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Andrei Păun
    • 1
  • Mihaela Păun
    • 1
  1. 1.Department of Computer ScienceUniversity of Western OntarioLondonCanada

Personalised recommendations