Strong iteration lemmata for regular, linear, context-free, and linear indexed languages

  • Pál Dömösi
  • Manfred Kudlek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1684)


New iteration lemmata are presented, generalizing most of the known iteration lemmata for regular, linear, context-free, and linear indexed languages.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aho, A. V., Indexed Grammars. Journ. of ACM, 15 (1968), 647–671.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bader, C., Moura, A., A Generalization of Ogden’s Lemma. JACM 29, no. 2, (1982), 404–407.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bar-Hillel, Y., Perles, M., Shamir, E., On Formal Properties of Simple Phrase Structure Grammars. Zeitschrift für Phonetik, Sprachwissenschaft, und Kommunikationsforschung, 14 (1961), 143–172.zbMATHMathSciNetGoogle Scholar
  4. 4.
    Berstel, J., Boasson, L., Context-free Languages., in Handbook of Theoretical Computer Sciences, Vol. B: Formal Models and Semantics, van Leeuwen, J., ed., Elsevier/MIT, 1994, 60–102.Google Scholar
  5. 5.
    Dömösi, P., Duske, J., Subword Membership Problem for Linear Indexed Languages. Proc. Worksh. AMILP’95 (Algebraic Methods in Language Processing, 1995), Univ. of Twente, Enschede, The Netherlands, 6–8 Dec., A. Nijholt, G. Scollo, R. Steetskamp, eds., TWLT-11, Univ. of Twente, Enschede, 1995, 235–237.Google Scholar
  6. 6.
    Dömösi, P., Ito, M., On Subwords of Languages. RIMS Proceedings, Kyoto Univ., 910 (1995), 1–4.zbMATHGoogle Scholar
  7. 7.
    Dömösi, P., Ito, M., Characterization of Languages by Lengths of their Subwords. Proc. Int. Conf. on Semigroups and their Related Topics, (Inst. of Math., Yunnan Univ., China,) Monograph Series, Springer-Verlag, Singapore, to appear.Google Scholar
  8. 8.
    Dömösi, P., Ito, M., Katsura, M, Nehaniv, C., A New Pumping Property of Context-free Languages. Combinatorics, Complexity and Logic (Proc. Int. Conf. DMTCS’96), ed. D.S. Bridges et al., Springer-Verlag, Singapore, 1996, 187–193.Google Scholar
  9. 9.
    Duske, J., Parchmann, R., Linear Indexed Grammars. Theoretical Computer Science 32 (1984), 47–60.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Harrison, M. A., Introduction to Formal Language Theory. Addison-Wesley Publishing Company, Reading, Massachusetts, Menlo Park, California, London, Amsterdam, Don Mils, Ontario, Sidney, 1978.zbMATHGoogle Scholar
  11. 11.
    Hayashi, T., On Derivation Trees of Indexed Grammars-an Extension of the uvwxy — Theorem. Publ. RIMS, Kyoto Univ., 9 (1973), 61–92.Google Scholar
  12. 12.
    Hopcroft, J. E., Ullmann, J. D., Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading, Massachusetts, Menlo Park, California, London, Amsterdam, Don Mils,Ontario, Sidney, 1979.zbMATHGoogle Scholar
  13. 13.
    Horváth, S., A Comparison of Iteration Conditions on Formal Languages. In Algebra, Combinatorics and Logic in Computer Science, vol. II, pp. 453–464, Colloquia Matematica Societatis János Bolyai, 42, North Holland 1986.Google Scholar
  14. 14.
    Nijholt, A., An Annotated Bibliography of Pumping. Bull. EATCS, 17 (June, 1982), 34–52.Google Scholar
  15. 15.
    Ogden, W., A Helpful Result for Proving Inherent Ambiguity. Math. Syst. Theory 2 (1968), 191–194zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Salomaa, A., Formal Languages, Academic Press, New York, London, 1973.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Pál Dömösi
    • 1
  • Manfred Kudlek
    • 2
  1. 1.Institute of Mathematics and InformaticsLajos Kossuth UniversityDebrecenHungary
  2. 2.Fachbereich InformatikUniversität HamburgHamburgGermany

Personalised recommendations