Advertisement

Constructive notes on uniform and locally convex spaces

  • Luminitţa Dediu
  • Douglas Bridges
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1684)

Abstract

Some elementary notions in the constructive theory of uniform and locally convex spaces are introduced, and a number of basic results established. In particular, it is shown that if the unit ball of a locally convex space X is totally bounded, then so is the intersection of that ball with the kernel of any nonzero continuous linear functional on X.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Beeson, M.: Foundations of Constructive Mathematics. Springer-Verlag Heidelberg (1985)zbMATHGoogle Scholar
  2. [2]
    Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill New York (1967)zbMATHGoogle Scholar
  3. [3]
    Bishop, E., Bridges, D.: Constructive Analysis. Grundlehren der math. Wissenschaften 279 Springer-Verlag (1985)Google Scholar
  4. [4]
    Bridges, D.: Constructive Mathematics—its Set Theory and Practice. D.Phil. Thesis, Oxford University (1975)Google Scholar
  5. [5]
    Bridges, D., Dediu, L.: Constructing Extensions of Ultraweakly Continuous Linear Functionals. University of Canterbury New Zealand (preprint)Google Scholar
  6. [6]
    Bridges, D., Richman, F.: Varieties of Constructive Mathematics. Cambridge University Press (1987)Google Scholar
  7. [7]
    Dieudonnè, J.: Foundations of Modern Analysis. Academic Press New York (1960)zbMATHGoogle Scholar
  8. [8]
    Holmes, R. B.: Geometric Functional Analysis and its Applications. Springer-Verlag New York (1975)zbMATHGoogle Scholar
  9. [9]
    Hajime Ishihara, Normability and Compactness of Constructive Linear Mappings. Ph.D. Thesis, Tokyo Institute of Technology (1990)Google Scholar
  10. [10]
    Kadison, R. V., Ringrose, J. R.: Fundamentals of the Theory of Operator Algebras Vol.1 Academic Press New York (1983)zbMATHGoogle Scholar
  11. [11]
    Kushner, B. A.: Lectures on Constructive Mathematical Analysis. Amer. Math. Soc. Providence RI (1985)Google Scholar
  12. [12]
    Richman, F.: Intuitionism as a Generalization. Philosophia Math. 5 (1990) 124–128MathSciNetzbMATHGoogle Scholar
  13. [13]
    Rudin, W.: Functional Analysis. Second Edition McGraw-Hill New York (1991)zbMATHGoogle Scholar
  14. [14]
    Troelstra, A. S.: Comparing the theory of representations and constructive mathematics. In Computer Science Logic: Proceedings of the 5th Workshop, CSL’91, Berne Switzerland (E. Börger, G. Jäger, H. Kleine Büning, and M.M. Richter, eds), Lecture Notes in Computer Science 626 Springer-Verlag Berlin (1992) 382–395Google Scholar
  15. [15]
    Troelstra, A. S., van Dalen, D.: Constructivity in Mathematics: An Introduction (two volumes). North Holland 5Amsterdam (1988)Google Scholar
  16. [16]
    Weihrauch, K.: Computability. Springer-Verlag Heidelberg (1987)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Luminitţa Dediu
    • 1
  • Douglas Bridges
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of CanterburyChristchurchNew Zealand
  2. 2.Department of Mathematics and StatisticsUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations