Skip to main content

Compact Representation: An Approach to Efficient Implementation for the Data Warehouse Architecture

  • Conference paper
  • First Online:
DataWarehousing and Knowledge Discovery (DaWaK 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1676))

Included in the following conference series:

Abstract

Data Warehousing requires effective methods for processing and storing large amounts of data. OLAP applications form an additional tier in the data warehouse architecture and in order to interact acceptably with the user, typically data pre-computation is required. In such a case compressed representations have the potential to improve storage and processing efficiency. This paper proposes a compressed database system which aims to provide an effective storage model. We show that in several other stages of the Data Warehouse architecture compression can also be employed. Novel systems engineering is adopted to ensure that compression/decompression overheads are limited, and that data reorganisations are of controlled complexity and can be carried out incrementally. The basic architecture is described and experimental results on the TPC-D and other datasets show the performance of our system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Codd, E.F. A relational model for large shared databanks. In Comm.of ACM 13 (6):377–387, 1970

    Article  MATH  Google Scholar 

  2. Codd, E.F., Codd, S.B., Salley. C.T. Providing OLAP (On Line Analytical Processing) to User Analyst: An IT Mandate. Available at http://www.arborsoft.com/OLAP.html.

  3. Chaudhuri, S., Dayal, U.“An Overview of Data Warehousing and OLAP Technology ”Technical Report MSR-TR-97-14.,Microsoft Research Advanced Technology.

    Google Scholar 

  4. Widom. J. Research Problems in Data Warehousing. In Proc. 4th Intl. CIKM Conf., 1995.

    Google Scholar 

  5. Shukla, A., Deshpande, M.P., Naughton, J.F., Ramasamy, K. Storage Estimation for Multidimensional Aggregates in the Presence of Hierarchies. In. Proc. 22nd VLDB, pages 522–531,Mumbay, Sept. 1996.

    Google Scholar 

  6. Agarwal, S., Agrawal, R., Deshpande, M.P., Gupta, A., Naughton, J.F., Ramakrishnan, R., Sarawagi, S. On the Computation of Multidimensional Aggregates. Proc. 22 nd VLDB, page 602, Mumbay, Sept. 1996.

    Google Scholar 

  7. Harinarayan, V., A. Rajaraman, J.D. Ullman. Implementing Data Cubes Efficiently. In Proc. ACM SIGMOD’ 96, Montreal, June 1996.

    Google Scholar 

  8. Gupta, V., Harinarayan, V., Rajaraman, A., Ullman, J. Index Selection for Olap In Proc. 13th ICDE, Manchester, UK April 1997.

    Google Scholar 

  9. Gupta, A. What is the Warehouse Problem? Are materialized views the answer? In Proc. VLDB, Mumbay, Sept. 1996.

    Google Scholar 

  10. Rosenberg, J., Keedy, J.K., Abramson, D. Addressing mechanisms for large Virtual memories. Technical report, St.Andrews University, 1990. CS/90/2.

    Google Scholar 

  11. Garcia-Molina, H. Salem, K. Main memory database systems: an overview. IEEE Transactions on Knowledge and Data Engineering 4:6, 1992, pp 509–516.

    Article  Google Scholar 

  12. Mathews, R. Spintronics In New Scientist, February 98. Pages 24–28

    Google Scholar 

  13. Roth, M.A., Van Horn, S.J. Database Compression. In SIGMOD RECORD, Vol 22, No.3, September 1993

    Google Scholar 

  14. Iyer, B.R., Wilhite, D. Data Compression Support in Databases. In Proc.of the 20nd VLDB, page 695, Chile, 1994.

    Google Scholar 

  15. Cormack. G.V. Data Compression on a Database System. In Communications of the ACM, Volume 28, Number 12, 1985.

    Google Scholar 

  16. Ramakrishnan, R. Database Management Systems. WCB/ McGraw-Hill. 1998.

    Google Scholar 

  17. Graefe, G., Shapiro, L.D. Data Compression and Data Performance. In Proc. of ACM/IEEE Computer Science Symp. on Applied Computing, Kansas City, Apr.1991.

    Google Scholar 

  18. Pucheral, P., Thevenin, J., and Valduriez P., Efficient main memory data management using DBGraph storage model Proc. of the 16th VLDB Conference, Brisbane 1990, pp 683–695.

    Google Scholar 

  19. Goldstein, R.,and Strnad A. The MacAIMS data management system. Proc. of the ACM SCIFIDET Workshop on Data Description and Access, 1970.

    Google Scholar 

  20. Wang C., Lavington S.,The lexical token converter. high performance associative Dictionary for large knowledge bases. Department of Computer Science, University of Essex Internal Report CSM-133.

    Google Scholar 

  21. Lehman, T.J., Shekita, E.J., Cabrera L. An Evaluation of Starburst’s Memory Resident Storage Component. IEEE Transactions Knowledge and Data Engineering.Vol 4.No 6, Dec 1992.

    Google Scholar 

  22. Todd, S.J.P., Hall, P.A., Hall, V., Hitchcock, P. An Algebra for Machine Computation” IBM Publication UKSC 0066 1975.

    Google Scholar 

  23. Huffman, D.A. A Method for the Construction of Minimum-Redundancy Codes”, Proc. of the IRE, 40: 1098–1101 September 1952.

    Article  Google Scholar 

  24. Welch, T.A. A technique for high Performance Data Compression, IEEE Computer 17 June 1984), 8–19.

    Google Scholar 

  25. Kimball, R. “The Data WarehouseToolkit. John Wiley, 1996.

    Google Scholar 

  26. Cockshott, W.P., McGregor, D.R., Kotsis, N., Wilson J. Data Compression in Database Systems in IDEAS’98, Cardiff, July 1998.

    Google Scholar 

  27. Labio, W.J., Quass, D., Adelberg, B.“Physical Database Design for Data Warehouses.” TRCS University of Stanford.

    Google Scholar 

  28. Baralis,. E., Paraboschi, S., Teniente E. Materialized View Selection in a Multidimensional Databases. In Proc. 23nd VLDB, page 156, Athens, Sept. 1997.

    Google Scholar 

  29. Cockshott, W.P., Cowie, A.J., Rusell, G.W., McGregor, D. Memory Resident Databases: Reliability, Compression and Performance. Research Report ARCH 11-93,Computer Science, University of Strathclyde.

    Google Scholar 

  30. Bitton, D., DeWitt, D.J., Turbyfill, C. Benchmarking Database Systems-a systematic approach, in Proc. VLDB 1983.

    Google Scholar 

  31. Boncz, P.A., Kersten, M.L Monet: An Impressionist sketch of an advanced database. system. Proceedings IEEE BIWIT workshop. July1990. San Sebastian, Spain.

    Google Scholar 

  32. De Witt, D.J., Ghandeharizadeh, D., Schneider, D., Bricker, A., Hsiao, H., Rasmussen, R. The GAMMA database machine project. IEEE Transactions on Knowledge and Data Engineering, 2, 44–62 (1990).

    Article  Google Scholar 

  33. De Witt, D.J., Ghandeharizadeh, D., Schneider, D., Jauhari, R., Muralikrishna, M. Sharma, A. 1987. A single user evaluation of the GAMMA database machine. In Proceedings of the 5 th International Workshop on Database Machines, October, Tokyo, Japan.

    Google Scholar 

  34. Leland, M.D.P., Roome, W.D., 1987. The Silicon Database Machine: Rational Design and Results. In Proc.of the 5th International Workshop on Database Machines. October, Tokyo, Japan.

    Google Scholar 

  35. Wischut, A.N., Flokstra, J., Apers, PMG., 1992. Parallelism in a Main Memory DBMS: The performance of PRISMA/DB, In Proc. of the 18 th International Conference of Very Large Databases, August, Vancouver, Canada.

    Google Scholar 

  36. Eich, M.H.,1987. MARS: The design of a main memory database machine”, In Proc. of the 5 th International Workshop on Database Machines, October, Tokyo, Japan.

    Google Scholar 

  37. Raab, R. editor. TPC BenchmarkTM D Standard Specification Revision 1.3.1 Transaction Processing Council 1998.

    Google Scholar 

  38. Wu, M.C., Buchmann, A.P. Encoded Bitmap Indexing for Data Warehouses. In SIGMOD Conference 1999.

    Google Scholar 

  39. DeWitt, D.J., Katz, R.H., Olken, F., Shapiro L.D., Stonebraker M.R., Wood, D. 1984 Implementation techniques for main memory database systems. In Proceedings of ACM SIGMOD Conference, New York, 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kotsis, N., McGregor, D.R. (1999). Compact Representation: An Approach to Efficient Implementation for the Data Warehouse Architecture. In: Mohania, M., Tjoa, A.M. (eds) DataWarehousing and Knowledge Discovery. DaWaK 1999. Lecture Notes in Computer Science, vol 1676. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48298-9_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-48298-9_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66458-1

  • Online ISBN: 978-3-540-48298-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics