Evaluation of Video Communication over Packet Switching Networks

  • Klaus Heidtmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1667)


Real-time video communication as a component of distributed multimedia systems for new evolving applications like video telefony and video- conferencing is strongly dependent on the quality of service provided by its communication support. Dependability attributes of the undelying communication system playing a predominant role with regard to the quality achievable from applications and users point of view. Especially video compression reduces data rates by removing the original redundancy of video sequencies but creates dependencies between data of different images enabling extensive error propagation. So real-time video communication becomes extremely sensitive to faulty transmitted, lost or too late arriving data. This dependability inherent for instance in most packet switching networks results in low video quality.

In this paper we study video communication via best-effort networks, which present the actual communication infrastructure. First we illustrate the effect of transmission deficiencies on the visual quality of the received video. Then an analytical model of dependability is developed, which reflects the transmission of MPEG and H.261 coded video streams. We apply our model to compute appropriate or even optimal parameters for video encoders. Forward error control using error correcting codes provides the communication process with fault tolerance, which may improve the quality of video transmission by systematic redundancy. So we extend our model to determine the required level of redundancy. Finally we discuss further mechanisms of fault tolerance to achieve high video quality even in case of modest or even low quality of service delivered by communication systems.


multimedia system real-time video communication visual quality dependability evaluation best-effort network quality of service forward error control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ABE 96]
    Albanese, A., Blömer J., Edmonds J., Luby M., Sudan M., Priority Encoding Transmission, IEEE Trans. Information Theory 42, 6, Nov. 1996Google Scholar
  2. [ASW 98]
    Siemsglüss S., Albanese A., Wolfinger B., Information Dispersal to Improve Quality-of-Service on the Internet, Proc. SPIE Intern. Symp. on Voice, Video, and Data Communications, Vol. 3529, Boston/Mass., Nov. 1998Google Scholar
  3. [Bai 99]
    Bai G., Load Measurement and Modeling for Distributed Multimedia Applications in High-Speed Networks, Dissertation, FB Informatik University Hamburg, Uni Press Bd. 107, Lit Verlag, Hamburg, 1999Google Scholar
  4. [BNC 99]
    Bull D., Canagarajah N., Nix A. (ed.), Mobile Multimedia Communications, Academic Press, London, 1999Google Scholar
  5. [BoT 98]
    Bolot J., Turletti T., Experience with Rate Control Mechanisms for Packet Video in the Internet, ACM SIGCOMM Computer Communication Review, 28, 1, Jan. 1998Google Scholar
  6. [CaB 97]
    Carle G., Biersack E., Survey of Error Recovery Techniques for IP-based Audio-Visual Multicast Applications, IEEE Network Magazine 11, 6, 1997Google Scholar
  7. [Car 97]
    Carle, G., Error Control for Real-Time Audio-Visual Services, Seminar High Performance Networks for Multimedia Applications, Dagstuhl, 1997Google Scholar
  8. [CTC 96]
    Chen, Z., Tan S.M., Campbell R.H., Li Y.: Real Time Video and Audio in the World Wide Web, World Wide Web Journal, vol. 1, 1996Google Scholar
  9. [EfS 98]
    Effelsberg W., Steinmetz R., Video Compression Techniques, dpunkt-verlag, Heidelberg, 1998Google Scholar
  10. [GBL 98]
    Gibson J., Berger T., Lookabaugh et al., Digital Compression for Multimedia, Morgan Kaufmann Publ., 1998Google Scholar
  11. [HBD 98]
    Hafid A., Bochmann G., Dssouli R., Distributed Multimedia Applications and QoS: A Review, Electronic J. on Networks and Distrib. Processing 2, 6, 1998Google Scholar
  12. [Hei 97]
    Heidtmann K., Zuverlässigkeitsbewertung technischer Systeme, Teubner, Stuttgart, 1997Google Scholar
  13. [HeW 99]
    Heidtmann K., Wolfinger B., Analytische Leistungsbewertung von Videokommunikation gemäß H.261 über verlustbehaftete Paketvermittlungsnetze, 10. ITG/GI-Fachtagung über Messung, Modellierung und Bewertung von Rechen-und Kommunikationssystemen MMB’99, Trier, 1999Google Scholar
  14. [HKZ 99]
    Heidtmann K., Kohlhaas C., Zaddach M., Messung der Netzlast und Bewertung der Bildqualität bei Videokommunikation über Paketvermittlungsnetze, 15. GI/ITG-Fachtagung über Architektur von Rechensystemen ARCS’99, Jena, 1999Google Scholar
  15. [ISO 93]
    International Standard ISO/IEC 11172: Information technology-Coding of moving pictures and associated audio for digital storage media up to about 1.5 Mbit/s, Part 2: Video, 1993Google Scholar
  16. [ITU 93]
    Video codec for audivisual services at px64 kbits, ITU-T Recommendation H.261, 1993Google Scholar
  17. [ITU 98]
    Video coding for low bit rate communication, ITU-T Recommendation H.263, 1998Google Scholar
  18. [JaE 97]
    Jacobs, S., Eleftheriadis A., Adaptive video applications for non-QoS networks, Proc. 5th Intern. Workshop of Quality of Service IWQoS’97, New York, 1997.Google Scholar
  19. [LMS 97]
    Luby, M., Mitzenmacher M., Shokrollahi A. et al., Practical Loss-Resilient Codes, Proc. 29th ACM Symp. on Theory of Computing, 1997Google Scholar
  20. [Lu 96]
    Lu G., Communication and Computing for Distributed Multimedia Systems, Artech House, 1996Google Scholar
  21. [MRP 97]
    Messier A., Robinson J., Pahlavan K., Performance Monitoring of a Wireless Campus Area Network, LCN’97, 1997Google Scholar
  22. [PRC 98]
    Podolsky M., Romer C., McCanne S., Simulation of FEC-Based Error Control for Packet Audio on the Internet., Proc. INFOCOM’98, San Francisco, March 1998Google Scholar
  23. [RiV 98]
    Rizzo L., Vicisano L., RMDP: an FEC-based Reliable Multicast protocol for wireless environments, ACM Mobile Computing and Communications Review 2, 2, April 1998Google Scholar
  24. [Riz 97]
    Rizzo L., Effective erasure codes for reliable computer communication protocols, ACM Computer Communication Review 27, 2, April 1997Google Scholar
  25. [RoS 97]
    Rosenberg, J., Schulzrinne H., An A/V Profile Extension for Generic Forward Error Correction in RTP, Internet-Draft draft-ietf-avt-fec, Internet Engineering Task Force, 1997Google Scholar
  26. [Sie 98]
    Siemsglüss S., Information Dispersal to Improve Quality-of-Service on the Internet, diploma thesis, Depart. Computer Science, Univ. Hamburg, 1998Google Scholar
  27. [Sta 98]
    Stallings W., High Speed Networks, Prentice-Hall, 1998Google Scholar
  28. [Tan 96]
    Tanenbaum A.S., Computer Networks, 3rd ed., Prentice Hall, 1996Google Scholar
  29. [TuH 96]
    Turletti T., Huitema C., RTP Payload Format for H.261 Video Stream, Prop. Internet Stand., RFC 2032, Oct. 1996Google Scholar
  30. [Wol 97a]
    Wolfinger B., On the Potential of FEC Algorithms in Building Fault-tolerant Distributed Applications to Support High QoS Video Communications, ACM Symp. Principles of Distributed Computing PODC’97, Santa Barbara, 1997Google Scholar
  31. [Wol 97b]
    Wolfinger B., Efficiency Video Encoding without and with FEC: Analytical Models for QoS Evaluations, 1st World Congress on System Simulation, Singapore, 1997Google Scholar
  32. [WoS 97]
    Wolf, L.C., Steinmetz R., Concepts for Resource Reservation in Advance, J. Multimedia Tools and Applications, State of the Art in Multimedia Computing 4, 3, May 1997.Google Scholar
  33. [Zhu 97]
    Zhu C., RTP Payload Format for H.263 Video Streams, Proposed Internet Standard, RFC 2190, Sept. 1997Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Klaus Heidtmann
    • 1
  1. 1.Telecommunication and Computer Networks Division, Department of Computer ScienceUniversity of HamburgHamburgGermany

Personalised recommendations