Advertisement

Dynamic Adaptation of Cooperative Agents for MRI Brain Scans Segmentation

  • Nathalie Richard
  • Michel Dojat
  • Catherine Garbay
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2101)

Abstract

To cope with the difficulty of MRI brain scans automatic segmentation, we need to constrain and control the selection and the adjustment of processing tools depending on the local image characteristics. To extract domain and control knowledge from the image, we propose to use situated cooperative agents whose dedicated behavior, i.e. segmentation of one type of tissue, is dynamically adapted with respect to their position in the image. Qualitative maps are used as a common framework to represent knowledge. Constraints that drive the agents behavior, based on topographic relationships and radiometric information, are gradually gained and refined during the segmentation progress. Incremental refinement of the segmentation is obtained through the combination, distribution and opposition of solutions concurrently proposed by the agents, via respectively three types of cooperation: integrative, augmentative and confrontational. We report in detail our multi-agent approach and results obtained on MRI brain scans.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zeki, S. and Shipp, S.: The functional logic of cortical connections. Nature 335 (1988) 311–314.CrossRefGoogle Scholar
  2. 2.
    Tootell, R. B., Hadjikhani, N. K., Mendola, J. D., et al.: From retinotopy to recognition: fMRI in human visual cortex. Trends Neurosci 2 (1998) 174–182.CrossRefGoogle Scholar
  3. 3.
    Van Essen, D. C., Drury, H. A., Joshi, S. et al.: Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. PNAS USA 95 (1998) 788–795.CrossRefGoogle Scholar
  4. 4.
    Wandell, B. A.: Computational neuroimaging of human visual cortex. Ann Rev Neurosci 22 (1999) 145–173.CrossRefGoogle Scholar
  5. 5.
    DeYoe, E. A., Carman, G. J., Bandettini, P., et al.: Mapping striate and extrastriate visual areas in human cerebral cortex. PNAS USA 93 (1996) 2382–86.CrossRefGoogle Scholar
  6. 6.
    Wandell, B. A., Chial, S. and Backus, B. T.: Visualization and measurement of the cortical surface. Journal of Cognitive Neuroscience 12 (2001) 739–752.CrossRefGoogle Scholar
  7. 7.
    Teo, P. C., Sapiro, G. and Wandell, B. A.: Creating connected representations of cortical gray matter for functional MRI visualization. IEEE Trans Med Imag 16 (1997) 852–863.CrossRefGoogle Scholar
  8. 8.
    Collins, D., Zijdenbos, A., Kollokian, V., et al.: Design and construction of a realistic digital brain phantom. IEEE Trans Med Imag 17 (1998) 463–468.CrossRefGoogle Scholar
  9. 9.
    Drury, H. A., Van Essen, D. C., Anderson, C. H., et al.: Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system. Journal of Cognitive Neuroscience 8 (1996) 1–28.CrossRefGoogle Scholar
  10. 10.
    Dale, A. M., Fischl, B. and Sereno, M.: Cortical surface-based analysis I: segmentation and surface reconstruction. NeuroImage 9 (1999) 179–194.CrossRefGoogle Scholar
  11. 11.
    Germond, L., Dojat, M., Taylor, C. and Garbay, C.: A cooperative framework for segmentation of MRI brain scans. Artif Intell in Med 20 (2000) 77–94.CrossRefGoogle Scholar
  12. 12.
    Warnking, J., Guérin-Dugué, A., Chéhikian, A., et al.: Retinotopical mapping of visual areas using fMRI and a fast cortical flattening algorithm. Neuroimage 11 (2000) S646.CrossRefGoogle Scholar
  13. 13.
    Bloch, I.: Information combination operators for data fusion: A comparative review with classification. IEEE Trans Systems, Man, Cybernetics 26 (1996)Google Scholar
  14. 14.
    Comaniciu, D. and Meer, P.: Distribution free decomposition of multivariate data. Pattern analysis applications 2 (1999) 22–30.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Nathalie Richard
    • 1
    • 2
  • Michel Dojat
    • 1
    • 2
  • Catherine Garbay
    • 2
  1. 1.U438 - RMN Bioclinique, Centre Hospitalier UniversitaireInstitut National de la Santé et de la Recherche MédicaleGrenoble Cedex 9France
  2. 2.Laboratoire TIMC-IMAGInstitut Bonniot, Faculté de Médecine, Domaine de la MerciLa Tronche CedexFrance

Personalised recommendations