Advertisement

Using time-oriented data abstraction methods to optimize oxygen supply for neonates

  • Andreas Seyfang
  • Silvia Miksch
  • Werner Horn
  • Michael S. Urschitz
  • Christian Popow
  • Christian F. Poets
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2101)

Abstract

Therapy management needs sophisticated patient monitoring and therapy planning, especially in high-frequency domains, like Neonatal Intensive Care Units (NICUs), where complex data sets are collected every second. An elegant method to tackle this problem is the use of time-oriented, skeletal plans. Asgaard is a framework for the representation, visualization, and execution of such plans. These plans work on qualitative abstracted time-oriented data which closely resemble the concepts used by experienced clinicians.

This papers presents the data abstraction unit of the Asgaard system. It provides a range of connectable data abstraction methods bridging the gap between the raw data collected by monitoring devices and the abstract concepts used in therapeutic plans. The usability of this data abstraction unit is demonstrated by the implementation of a controller for the automated optimization of the fraction of inspired oxygen (FiO2). The use of the time-oriented data abstraction methods results in safe and smooth adjustment actions of our controller in a neonatal care setting.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Bellazzi, C. Larizza, P. Magni, S. Montani, and G. De Nicolao, ‘Intelligent analysis of clinical time series by combining structural filtering and temporal abstractions’, in Artificial Intelligence in Medicine, ed., Horn, W. et al., pp. 261–270, Berlin, (1999). Springer.CrossRefGoogle Scholar
  2. 2.
    M. Berthold and D.J. Hand, Intelligent Data Analysis: An Introduction, Springer, Berlin, 1999.zbMATHGoogle Scholar
  3. 3.
    J. Hunter and N. McIntosh, ‘Knowledge-based event detection in complex time series data’, in Artificial Intelligence in Medicine, ed., Horn, W. et al., pp. 271–280, Berlin, (1999). Springer.CrossRefGoogle Scholar
  4. 4.
    C. Larizza, R. Bellazzi, and A. Riva, ‘Temporal abstractions for diabetic patients management’, in Artificial Intelligence in Medicine, ed., Keravnou E. et al., pp. 319–330, Berlin, (1997). Springers.CrossRefGoogle Scholar
  5. 5.
    N. Lavrac, E. Keravnou, and B. Zupan, ‘Intelligent data analaysis in medicine’, in Encyclopaedia of Computer Science and Technology, ed., Kent, A. et al., volume 42, 113–157, Marcel Dekker, New York, Basel, (2000).Google Scholar
  6. 6.
    S. Miksch, W. Horn, C. Popow, and F. Paky, ‘Utilizing temporal data abstraction for data validation and therapy planning for artificially ventilated newborn infants’, Artificial Intelligence in Medicine, 8(6), 543–576, (1996).CrossRefGoogle Scholar
  7. 7.
    S. Miksch, A. Seyfang, W. Horn, and C. Popow, ‘Abstracting steady qualitative descriptions over time from noisy, high-frequency data’, in Artificial Intelligence in Medicine, ed., Horn, W. et al., pp. 281–290, Berlin, (1999). Springer.CrossRefGoogle Scholar
  8. 8.
    A. Seyfang, R. Kosara, and S. Miksch, ‘Asbru 7.2 reference manual’, Technical Report Asgaard-TR-2000-3, Vienna University of Technology, Institute of Software Technology, (2000). available at http://www.ifs.tuwien.ac.at/asgaard/asbru/asbru_7_2_new/.
  9. 9.
    Y. Shahar, S. Miksch, and P. Johnson, ‘The Asgaard Project: A task-specific frame-work for the application and critiquing of time-oriented clinical guidelines’, Artificial Intelligence in Medicine, 14, 29–51, (1998).CrossRefGoogle Scholar
  10. 10.
    Y. Shahar and M. A. Musen, ‘Knowledge-based temporal abstraction in clinical domains’, Artificial Intelligence in Medicine, 8(3), 267–298, (1996).CrossRefGoogle Scholar
  11. 11.
    Y. Sun, I.S. Kohane, and A.R. Stark, ‘Computer-assisted adjustment of inspired oxygen concentration improves control of oxygen saturation in newborn infants requiring mechanical ventilation’, Journal of Pediatrics, 131(5), 754–756, (1997).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Andreas Seyfang
    • 1
  • Silvia Miksch
    • 1
  • Werner Horn
    • 2
  • Michael S. Urschitz
    • 3
    • 2
  • Christian Popow
    • 4
  • Christian F. Poets
    • 3
  1. 1.Institute of Software TechnologyUniversity of TechnologyViennaAustria
  2. 2.Department of Medical Cybernetics and Artificial IntelligenceUniversity of Vienna, and Austrian Research Institute for Artificial IntelligenceAustria
  3. 3.Department of Neonatology and Pediatric PulmonologySchool of MedicineHannoverGermany
  4. 4.Department of PediatricsUniversity of ViennaAustria

Personalised recommendations