Skip to main content

Total Colorings of Degenerated Graphs

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2076))

Included in the following conference series:

Abstract

A total coloring of a graph G is a coloring of all elements of G, i.e. vertices and edges, in such a way that no two adjacent or incident elements receive the same color. A graph G is s-degenerated for a positive integer s if G can be reduced to a trivial graph by successive removal of vertices with degree ≤ s. We prove that an s-degenerated graph G has a total coloring with Δ + 1 colors if the maximum degree Δ of G is sufficiently large, say Δ ≥ 4s+3. Our proof yields an efficient algorithm to find such a total coloring. We also give a linear-time algorithm to find a total coloring of a graph G with the minimum number of colors if G is a partial k-tree, i.e. the tree-width of G is bounded by a fixed integer k.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Arnborg and J. Lagergren, Easy problems for tree-decomposable graphs, J. Algorithms, 12(2), pp. 308–340, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees, J. Algorithms, 11(4), pp. 631–643, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  3. O. V. Borodin, A. V. Kostochka and D. R. Woodall, List edge and list total colourings of multigraphs, J. Combinatorial Theory, Series B, 71, pp. 184–204, 1997.

    MathSciNet  Google Scholar 

  4. R. B. Borie, R. G. Parker and C. A. Tovey, Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families, Algorithmica, 7, pp. 555–581, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Cole, K. Ost and S. Schirra, Edge-coloring bipartite multigraphs in O(E logD) time, Combinatorica, 21, pp. 5–12, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Diestel, Graph Theory, Springer, New York, 1997.

    MATH  Google Scholar 

  7. S. Isobe, X. Zhou and T. Nishizeki, A polynomial-time algorithm for finding total colorings of partial k-trees, Int. J. Found. Comput. Sci., 10(2), pp. 171–194, 1999.

    Article  MathSciNet  Google Scholar 

  8. T. R. Jensen and B. Toft, Graph Coloring Problems, John Wiley & Sons, New York, 1995.

    MATH  Google Scholar 

  9. D. Matula and L. Beck, Smallest-last ordering and clustering and graph coloring algorithms, J. Assoc. Comput. Mach., 30, pp. 417–427, 1983.

    MATH  MathSciNet  Google Scholar 

  10. T. Nishizeki and N. Chiba, Planar Graphs: Theory and Algorithms, North-Holland, Amsterdam, 1988.

    Book  MATH  Google Scholar 

  11. A. Sánchez-Arroyo. Determining the total colouring number is NP-hard, Discrete Math., 78, pp. 315–319, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Szekeres and H. Wilf, An inequality for the chromatic number of a graph, J. Combinatorial Theory, 4, pp. 1–3, 1968.

    Article  MathSciNet  Google Scholar 

  13. V. G. Vizing, Critical graphs with given chromatic class (in Russian), Metody Discret Analiz., 5, pp. 9–17, 1965.

    MATH  MathSciNet  Google Scholar 

  14. H. P. Yap, Total Colourings of Graphs, Lect. Notes in Math., 1623, Springer, Berlin, 1996.

    MATH  Google Scholar 

  15. X. Zhou, S. Nakano and T. Nishizeki, Edge-coloring partial k-trees, J. Algorithms, 21, pp. 598–617, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  16. X. Zhou and T. Nishizeki, Edge-coloring and f-coloring for various classes of graphs, J. Graph Algorithms and Applications, http://www.cs.brown.edu/publications/jgaa/, 3(1), pp. 1–18, 1999.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Isobe, S., Zhou, X., Nishizeki, T. (2001). Total Colorings of Degenerated Graphs. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds) Automata, Languages and Programming. ICALP 2001. Lecture Notes in Computer Science, vol 2076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48224-5_42

Download citation

  • DOI: https://doi.org/10.1007/3-540-48224-5_42

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42287-7

  • Online ISBN: 978-3-540-48224-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics