Advertisement

Hyper-Rectangle Distribution Algorithm for Parallel Multidimensional Numerical Integration

  • Raimondas Čiegis
  • Ramūnas Šablinskas
  • Jerzy Waśniewski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1697)

Abstract

In this paper we consider parallel numerical integration algorithms for multi-dimensional integrals. A modified algorithm of hyper-rectangle selection and distribution strategy is proposed for the implementation of globally adaptive parallel quadrature algorithms. A list of subproblems is distributed among slave processors. Numerical results on the SP2 computer and on a cluster of workstations are reported. A test problem where the integrand function has a strong corner singularity is investigated.

Keywords

parallel adaptive integration distributed-memory parallel computers load-balancing redistribution of tasks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1995]
    Bull, J.M., Freeman, T.L.: Parallel Globally Adaptive Algorithms for Multi-dimensional Integration. Applied Numerical Mathematics 19 (1995) 3–16MATHCrossRefGoogle Scholar
  2. [1991]
    Freeman T.L. and Phillips C.: Parallel Numerical Algorithms. Prentice Hall, New York, London, Toronto, Sydney, Tokyo, Singapore (1991).Google Scholar
  3. [1997]
    Čiegis, R., Šablinskas, R., Waśniewski, J.: Numerical Integration on Distributed Memory Parallel Systems. In: Bubak, M., Dongarra, J., Waśniewski, J. (eds.): Recent Advances in PVM and MPI. Lecture Notes in Computer Science, Vol. 1332. Springer-Verlag, Berlin Heidelberg New York (1997) 329–336Google Scholar
  4. [1998]
    Čiegis, R., Šablinskas, R., Waśniewski J.: Hyper-rectangle selection strategy for parallel adaptive numerical integration. In: B. Kagstrom, Dongarra, J., Elmroth, E., Waśniewski, J. (eds.): Proc. 4th International Workshop PARA98. Lecture Notes in Computer Science, Vol. 1541. Springer-Verlag, Berlin Heidelberg New York (1998) 71–75Google Scholar
  5. [1980]
    Genz, A.C., Malik, A.A.: Remarks on Algorithm 006: an Adaptive Algorithm for Numerical Integration Over an N-dimensional Rectangular Region. J. Comput. Appl. Math. 6 (1980) 295–302MATHCrossRefGoogle Scholar
  6. [1996]
    Keister, B.D.: Multi-dimensional Quadrature Algorithms. Computers in Physics, 10 (1996) 119–122CrossRefGoogle Scholar
  7. [1992]
    Miller, V.A., Davis, G.J.: Adaptive Quadrature on a Message Passing Multi-processor. J. Parallel Distributed Comput., 14 (1992) 417–425MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Raimondas Čiegis
    • 1
    • 2
  • Ramūnas Šablinskas
    • 2
    • 3
  • Jerzy Waśniewski
    • 4
  1. 1.Institute of Mathematics and InformaticsVilniusLithuania
  2. 2.Vilnius Gediminas Technical UniversityVilniusLithuania
  3. 3.Vytautas Magnus UniversityKaunasLithuania
  4. 4.The Danish Computing Centre for Research and EducationLyngbyDenmark

Personalised recommendations