Advertisement

Solving Large Systems of Differential Equations with PaViS

  • Dana Petcu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2328)

Abstract

A short presentation and a benchmark of a prototyping tool that facilitates the use of a network of computers or a parallel computer to solve course-grained large-scale problems are the subjects of this paper. The benchmark is concerning systems in a range of tens to hundreds ordinary differential equations solved by parallel numerical methods.

Keywords

parallel numerical methods mathematical software initial value problems for ordinary differential equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Casanova H., and Dongarra, J.: NetSolve’s network enabled server-examples and applications, IEEE Computational Science & Engineering 5(3), 57–67Google Scholar
  2. 2.
    Cong, N., A parallel DIRK method for stiff-initial value problems, J. Comp. Appl. Math., 54 (1994), 121–127.zbMATHCrossRefGoogle Scholar
  3. 3.
    Geist, A., et al.: PVM-Parallel Virtual Machine, a users’ guide and tutorial for networked parallel computing, MIT Press, 1994.Google Scholar
  4. 4.
    Hairer E. and Wanner G., Solving ordinary differential equations II. Stiff and differential-algebraic problems, Springer-Verlag, 1991.Google Scholar
  5. 5.
    Houwen, P.J., Parallel step-by-step methods, Appl. Num. Math. 11 (1993), 68–81.Google Scholar
  6. 6.
    A. Iserles and S.P. Nørsett, On the theory of parallel Runge-Kutta methods, IMA J. Numer. Anal. 10, 1990, 463–488.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Pawletta, S. et al.: Distributed and Parallel Application Toolbox for use with Mat-lab, http://anson.ucdavis.edu/~bsmoyers/parallel.htm (1997)
  8. 8.
    Petcu, D.: On the use of multiprocessor systems for initial value problems, PPAM’99, eds. R. Wyrzykowski et al, PUHW Axon, Częstochova (1999), 306–317Google Scholar
  9. 9.
    Petcu D. and Drăgan, M.: Designing an ODE Solving Environment, LNCSE 10: SciTools 1998, eds. H.P. Langtangen et al, Springer, Berlin (2000), 319–338Google Scholar
  10. 10.
    Petcu, D.: Numerical solution of ODEs with Distributed Maple, LNCS 1988: NAA 2000, eds. L. Vulkov et al, Springer, Berlin (2001), 666–674.Google Scholar
  11. 11.
    Petcu D.: PVMaple-a distributed approach to cooperative work of Maple processes, LNCS 1908: PVMPI 2000, eds. J. Dongarra et al, Springer (2000), 216–224Google Scholar
  12. 12.
    Petcu D.: Solving initial value problems with parallel Maple processes, LNCS 2150: EuroPar 2001, eds. R. Sakellariou et al, Springer, Berlin (2001), 926–934.Google Scholar
  13. 13.
    Petcu D. and Gheorghiu, D.: PaVis-a parallel virtual environment for solving large mathematical problems, PARCO 2001, Proceedings, Napoli, Sept.’01, in print.Google Scholar
  14. 14.
    Shampine, L.F. and Reichelt, M.W., The Matlab ODE Suite, SIAM J. Sci. Comput. 18, No. 1 (1997), 1–22.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Schreiner W., Developing a distributed system for algebraic geometry, EuroCM-Par’99, Proceedings, Civil-Comp. Press, Edinburgh (1999), 137–146Google Scholar
  16. 16.
    Tam, H.W., One-stage parallel methods for the numerical solution of ordinary differential equations, SIAM J. Sci. Stat. Comput. 13 (1992), no. 5, 1039–1061.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Dana Petcu
    • 1
  1. 1.Western University of TimişoaraTimişoaraRomania

Personalised recommendations