Advertisement

Parallel Displacement Decomposition Solvers for Elasticity Problems

  • Radim Blaheta
  • Ondřej Jakl
  • Jiří Starý
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2328)

Abstract

This article describes the displacement decomposition and its benefits for the parallelization of the preconditioned conjugate gradient method for finite element elasticity problems. It deals with both the fixed and variable preconditioning based on this decomposition. Numerical efficiency of the parallel algorithms is demonstrated on an academic benchmark and real-life modelling problem.

Keywords

Domain Decomposition Conjugate Gradient Method Message Passing Interface Elasticity Problem Preconditioned Conjugate Gradient Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Axelsson, O., Gustafsson, I.: Iterative Methods for the solution of the Navier equations of elasticity. Computer Methods in Applied Mechanics and Engineering, 15 (1978), 241–258MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Blaheta, R.: Displacement decomposition-incomplete factorization preconditioning techniques for linear elasticity problems. Numerical Linear Algebra with Applications, 1 (1994), 107–128MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Blaheta, R.: GPCG-generalized preconditioned CG method and its use with nonlinear and nonsymmetric displacement decomposition preconditioners. TR-DAM-2001/3, Institute of Geonics Cz. Acad. Sci., Ostrava (2001), submittedGoogle Scholar
  4. 4.
    Blaheta, R.: Parallel iterative methods. Lecture notes, VŠB-Technical University, Ostrava (2000)Google Scholar
  5. 5.
    Blaheta, R.: Space decomposition methods: Displacement decomposition, composite grid finite elements and overlapping domain decomposition. In: Modern mathematical methods in engineering. VSB-Technical University, Ostrava (2000) 7–16Google Scholar
  6. 6.
    Blaheta, R., Byczanski, P., Jakl, O., Starý, J.: Space decomposition preconditioners and their application in geomechanics. TR-DAM-2001/4, Institute of Geonics Cz. Acad. Sci., Ostrava (2001), submittedGoogle Scholar
  7. 7.
    Blaheta, R., Jakl, O., Starý, J.: Large-scale FE Modelling in Geomechanics: a Case Study in Parallelization. In: Dongarra, J., Luque, E., Margalef, T. (eds.): Recent Advances in Parallel Virtual Machine and Message Passing Interface. LNCS, Vol. 1697. Springer-Verlag, Berlin (1999) 299–306CrossRefGoogle Scholar
  8. 8.
    Dongarra, J. J.: Performance of various computers using standard linear equations software (18/01/01). http://www.netlib.org/benchmark/performance.ps
  9. 9.
    Dongarra, J. J., Duff, I. S., Sorensen, D. C., van der Vorst, H.: Numerical linear algebra for high-performance computers. SIAM, Philadelphia (1998)zbMATHCrossRefGoogle Scholar
  10. 10.
    Notay, Y.: Flexible conjugate gradients. SIAM J. Sci. Comp., Vol. 22 (2000), 1444–1460MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Smith, B. F., Bjørstad, P. E., Gropp, W. D.: Domain Decomposition. Parallel multilevel methods for elliptic partial differential equations. Cambridge University Press (1996)Google Scholar
  12. 12.
    The Standard Performance Evaluation Corp. http://www.spec.org/ (25/01/01)

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Radim Blaheta
    • 1
    • 2
  • Ondřej Jakl
    • 1
    • 2
  • Jiří Starý
    • 1
    • 2
  1. 1.VŠB - Technical University OstravaOstrava-PorubaCzech Republic
  2. 2.Institute of GeonicsCzech Academy of SciencesOstrava-PorubaCzech Republic

Personalised recommendations