Advertisement

A Columnwise Block Striping in Neville Elimination

  • Pedro Alonso
  • Raquel Cortina
  • Irene Díaz
  • Vicente Hernández
  • José Ranilla
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2328)

Abstract

This paper presents a parallel algorithm to solve linear equation systems. This method, known as Neville elimination, is appropriate especially for the case of totally positive matrices (all its minors are non-negative). We discuss one common way to partition coefficient matrix among processors. In our mapping, called columwise block-cyclic-striped mapping, the matrix is divided into blocks of complete columns and these blocks are distributed among the processors in a cyclic way. The theoretic asymptotic estimation assures the speed-up to be k (being k the processor number); so the efficiency can take the value 1. Furthermore, in order to study the performance of the algorithm over a real machine (IBM SP2), some constants have been estimated. If such constants take these experimental values, then theoretic results are confirmed.

Keywords

Gaussian Elimination Communication Time Total Positivity Positive Matrice Linear Equation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alonso, P., Gasca, M., Peña, J.M.: Backward error analysis of Neville elimination, Applied Numerical Mathematics 23 (1997) 193–204MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alonso, P., Gasca, M., Peña, J.M.: Estudio del error progresivo en la eliminación de Neville, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales de Madrid 92-1 (1998) 1–8Google Scholar
  3. 3.
    Alonso, P., Cortina, R., Ranilla, J.: Block-Striped Partitioning and Neville Elimination, EURO-PAR’99. Parallel Processing, Lecture Notes in Computer Science 1685 (1999) 1073–1077CrossRefGoogle Scholar
  4. 4.
    Alonso, P., Cortina, R., Hernández, V., Ranilla, J.: A Study the performance of Neville elimination using two kinds of partitioning techniques. Linear Algebra and its Applications 332–334 (2001) 111–117CrossRefGoogle Scholar
  5. 5.
    Gallivan, K. A., Plemmons, R. J., Sameh, A. H.: Paralell algorithms for dense linear algebra computations, SIAM Rev. 32 (1990) 54–135MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Gasca, M., Michelli, C. A.: Total positivity and its Applications, Kluwer Academic Publishers, Boston (1996)zbMATHCrossRefGoogle Scholar
  7. 7.
    Gasca, M., Peña, J.M.: Total positivity and Neville elimination, Linear Algebra Appl. 165 (1992) 25–44MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Hockney, R., Berry, M.: Public International Benchmarks for Parallel Computers. PARKBENCH Committee: Report (1996) (http://www.netlib.org//parkbench)
  9. 9.
    Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to Parallel Computing. Design and Analysis of Algorithms, The Benjamin/Cummings, Menlo Park, CA (1994)Google Scholar
  10. 10.
    Petitet, A.P., Dongarra, J.J.: Algorithmic Redistribution Methods for Block Cyclic Decompositions, submmited to IEEE Transactions on Parallel and Distributed ComputingGoogle Scholar
  11. 11.
    Dongarra, J.J.: Performance of Various Computers Using Standard Linear Equations Software, (Linpack Benchmark Report), University of Tennessee Computer Science Technical Report, CS-89-85 (2001)Google Scholar
  12. 12.
    Trefethen, L. N., Schreiber, R. S.: Average-case stability of Gaussian Elimination SIAM J. Matrix Anal. Appl. 11 (1990) 335–360MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Pedro Alonso
    • 1
  • Raquel Cortina
    • 2
  • Irene Díaz
    • 3
  • Vicente Hernández
    • 4
  • José Ranilla
    • 2
  1. 1.Departamento de MatemáticasUniversidad de OviedoGijónSpain
  2. 2.Centro de Inteligencia ArtificialUniversidad de OviedoGijónSpain
  3. 3.Departamento de InformáticaUniversidad de OviedoGijónSpain
  4. 4.Departamento de Sistemas Informáticos y ComputaciónUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations