Visualization of Automorphisms and Vertex-Symmetry

  • Michael Sampels
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2328)


A heuristic for the visualization of arbitrary automorphisms of a graph by two-dimensional drawings is presented. The restriction of the drawing to a subgraph induced by an orbit of the automorphism is according to a symmetry of the plane. For a vertex-symmetric graph, a collection of drawings for a set of automorphisms which generate a transitive group on the vertices shows this symmetry property.


Rotation Symmetry Jordan Curve Straight Line Segment Transitive Group Petersen Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Norman Biggs. Algebraic Graph Theory. Cambridge University Press, 2nd edition, 1993.Google Scholar
  2. 2.
    Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing. Prentice Hall, New Jersey, 1999.zbMATHGoogle Scholar
  3. 3.
    B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov. Modern Geometry—Methods and Applications. Part I. The Geometry of Surfaces, Transformation Groups, and Fields. Springer-Verlag, 1984.Google Scholar
  4. 4.
    Peter Eades and Xuemin Lin. Spring algorithms and symmetry. In D. T. Lee and Tao Jiang, editors, Proceedings of the 3rd International Conference on Computing and Combinatorics (COCOON’ 97), LNCS 1276, pages 202–211. Springer-Verlag, 1997.CrossRefGoogle Scholar
  5. 5.
    Brendan D. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45–87, 1981.MathSciNetGoogle Scholar
  6. 6.
    Michael Sampels. Large networks with small diameter. In Rolf H. Möhring, editor, Proceedings of the 23rd International Workshop on Graph-Theoretic Concepts in Computer Science (WG’ 97), LNCS 1335, pages 288–302. Springer-Verlag, 1997.CrossRefGoogle Scholar
  7. 7.
    Michael Sampels. Representation of vertex-symmetric interconnection networks. In R. Wyrzykowski, H. Piech, and J. Szopa, editors, Proceedings of the 2nd International Conference on Parallel Processing & Applied Mathematics (PPAM’ 97), volume 1, pages 226–237. PCz IMI, 1997.Google Scholar
  8. 8.
    Martin Schönert et al. GAP — Groups, Algorithms and Programming. Lehrstuhl D für Mathematik, RWTH Aachen, Germany, 5th edition, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Michael Sampels
    • 1
  1. 1.Institut de Recherches Interdisciplinaires et de Développements en Intelligence ArtificielleUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations