Advertisement

On Parallel Generation of t—Ary Trees in an Associative Model

  • Zbigniew Kokosiński
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2328)

Abstract

In this paper a new parallel algorithm is presented for generation of t—ary trees. Computations run in an associative processor model. Tree sequences are generated in lexicographic order, with O(1) time per object, in a new representation, as combinations with repetitions with restricted growth. The corresponding full t—ary trees (x—sequences) appear in antilexicographic order.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akl, S.G.: Parallel computation: models and methods. Prentice Hall (1997) 475–509Google Scholar
  2. 2.
    Akl, S.G., Stojmenović, I.: Generating t-ary trees in parallel. Nordic J. of Computing3 (1996) 63–71Google Scholar
  3. 3.
    Akl, S.G., Stojmenović, I.: Generating combinatorial objects on a linear array of processors. [in:] Zomaya, A.Y. (editor): Parallel computing; paradigms and applications. Int. Thompson Press (1996) 639–670Google Scholar
  4. 4.
    Atkinson, M.D., Sack, J.-R.: Generating binary trees at random. Technical Report SCR-TR-184, Carleton University, Ottawa, Canada (1990) 1–5Google Scholar
  5. 5.
    Er, M. Lexicographic listing and ranking t-ary trees. The Computer Journal 30 (1987) 559–572MathSciNetGoogle Scholar
  6. 6.
    Er, M. Efficient generation of k-ary trees in natural order. The Computer Journal 35 (1992) 306–308zbMATHCrossRefGoogle Scholar
  7. 7.
    Kapralski, A.: New methods for the generation of permutations, combinations and other combinatorial objects in parallel. Journal of Parallel and Distributed Computing 17 (1993) 315–326MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Kapralski, A.: Sequential and parallel processing in depth search machines. World Scientific (1994)Google Scholar
  9. 9.
    Kokosiński, Z.: On generation of permutations through decomposition of symmetric groups into cosets. BIT 30 (1990) 583–591MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Kokosiński, Z.: On parallel generation of combinations in associative processor architectures. Proc. Int. Conference ”Parallel and Distributed Systems” Euro-PDS’97, Barcelona, Spain (1997) 283–289Google Scholar
  11. 11.
    Kokosiński, Z.: On parallel generation of set partitions in associative processor architectures. Proc. 5th Int. Conference ”Parallel and Distributed Processing Techniques and Applications” PDPTA’99, Las Vegas, USA, Vol. III (1999) 1257–1262Google Scholar
  12. 12.
    Knott, G.D.: A numbering system for binary trees. Comm. ACM 20 (1977) 113–115zbMATHCrossRefGoogle Scholar
  13. 13.
    Knuth, D.E.: The art of computer programming. Fundamental algorithms. Addison-Wesley, 3rd edition (1997)Google Scholar
  14. 14.
    Korsch, J.F.: Loopless generation of k-ary tree sequences. Information Processing Letters 52 (1994) 243–247MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to parallel computing. Design and analysis of algorithms. The Benjamin/Cummings Publishing Company (1994)Google Scholar
  16. 16.
    Krikelis, A., Weems, C.C. (eds): Associative processing and processors. IEEE Computer Society Press (1997)Google Scholar
  17. 17.
    Makinen, E.: Left distance binary tree representation. BIT 27 (1987) 163–169MathSciNetCrossRefGoogle Scholar
  18. 18.
    Makinen, E.: Constructing a binary tree from its traversals. BIT 29 (1989) 572–575MathSciNetCrossRefGoogle Scholar
  19. 19.
    Makinen, E.: A survey of binary tree codings. The Computer Journal 34 (1991) 438–443MathSciNetCrossRefGoogle Scholar
  20. 20.
    Mirsky, L.: Transversal theory. Academic Press (1971)Google Scholar
  21. 21.
    Martin, H.W., Orr, B.J.: A random binary tree generator. [in:] Computing trends in the 1990s. ACM 17th Computer Science Conf., Louisville, USA, (1989) 33–38Google Scholar
  22. 22.
    Pan, Y., Li, K.: Linear array with a reconfigurable pipelined bus system-concepts and applications. Journal of Information Sciences 106 (1998)237–258CrossRefGoogle Scholar
  23. 23.
    Roelants van Baronaigien, D.: A loopless algorithm for generating binary tree sequences. Information Processing Letters 39 (1991) 189–194MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Roelants van Baronaigien, D., Ruskey, F.: Generating t-ary trees in a-order. Information Processing Letters 27 (1988) 205–213MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Ruskey, F.: Generating t-ary trees lexicographically, SIAM Journal of Computing 7 (1978) 424–439MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Sedgewick, R.: Permutation generation methods. Computing Survey 9 (1977) 137–164MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Skarbek, W.: Generating ordered trees. Theoretical Computer Science 57 (1988) 153–159MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Stanton, D., White, D.: Constructive combinatorics. Wiley-Interscience (1996)Google Scholar
  29. 29.
    Stojmenović, I.: On random and adaptive parallel generation of combinatorial objects. Int. Journal of Computer Mathematics 42 (1992) 125–135zbMATHCrossRefGoogle Scholar
  30. 30.
    Trojanowski, A.E.: Ranking and listing algorithms for k-ary trees. SIAM Journal of Computing 7 (1978) 492–509MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Zaks, S.: Lexicographic generation of ordered trees. Theoretical Computer Science 10 (1980) 63–82MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Zaks, S.: Generating and ranking t-ary trees. Information Processing Letters 14 (1982) 44–48MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Zbigniew Kokosiński
    • 1
  1. 1.Faculty of Electrical & Computer Eng.Cracow University of TechnologyKrakówPoland

Personalised recommendations