Advertisement

Supercomputing for the Masses: A Parallel Macintosh Cluster

  • Viktor K. Decyk
  • Dean E. Dauger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2328)

Abstract

We have constructed a parallel cluster consisting of a mixture of Apple Macintosh G3 and G4 computers running the Mac OS, and have achieved very good performance on numerically intensive, parallel plasma particle-in-cell simulations. A subset of the MPI message-passing library was implemented in Fortran77 and C. This library enabled us to port code, without modification, from other parallel processors to the Macintosh cluster. Unlike Unix-based clusters, no special expertise in operating systems is required to build and run the cluster. This enables us to move parallel computing from the realm of experts to the main stream of computing.

Keywords

Parallel Application Message Size Apple Macintosh Status Window Select Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. L. Sterling, J. Salmon, D. J. Becker, and D.F. Savarese, How to Build a Beowulf. MIT Press, Cambridge, MA, USA, 1999.Google Scholar
  2. 2.
    V. K. Decyk, “Benchmark Timings with Particle Plasma Simulation Codes”, Supercomputer 27, vol V-5, p. 33 (1988).Google Scholar
  3. 3.
    V. K. Decyk, “Skeleton PIC Codes for Parallel Computers”, Computer Physics Communications 87, 87 (1995).Google Scholar
  4. 4.
  5. 5.
    Apple Computer, Inside Macintosh: Interapplication Communication [Addison-Wesley, Reading, MA, 1993], chapter 11.Google Scholar
  6. 6.
    M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The Complete Reference. MIT Press, Cambridge, MA, 1996.Google Scholar
  7. 7.
    R. D. Sydora, V. K. Decyk, and J. M. Dawson, “Fluctuation-induced heat transport results from a large global 3D toroidal particle simulation model”, Plasma Phys. Control. Fusion 38, A281 (1996).Google Scholar
  8. 8.
    K.-C. Tzeng, W. B. Mori, and T. Katsouleas, “Electron Beam Characteristics from Laser-Driven Wave Breaking,” Phys. Rev. Lett. 79, 5258 (1997).Google Scholar
  9. 9.
  10. 10.
    M. W. Kissick, J. N. Leboeuf, S. Cowley, J. M. Dawson, V. K. Decyk, P. A. Gourdain, J. L. Gauvreau, L. W. Schmitz, R. D. Sydora, and G. R. Tynan, “Radial electric field required to suppress ion temperature gradient modes in the electric tokamak”, Phys. Plasmas 6, 4722 (1999).Google Scholar
  11. 11.
    Dean E. Dauger, “Semiclassical Modeling of Quantum Mechanical Mutiparticle Systems using Parallel Particle-in-Cell Mehtods,” Ph.D. Thesis, University of California, Los Angeles, 2001. http://dauger.com/DaugerDissertation.pdf.Google Scholar
  12. 12.
    Chengkin Huang, John Tonge, Jean-Noel Leboeuf, and John M. Dawson, “Particile Simulations of Plasma Confinement in a Levitated Dipole,” Intl. Sherwood Fusion Theory Conference, Paper 1C46, April2001.Google Scholar
  13. 13.
    Dennis Taylor, “Apples are the Core of These Clusters,” IEEE Concurrency, vol. 7, no. 2, April-June, 1999, p. 7.Google Scholar
  14. 14.
    V.K. Decyk, D. Dauger, and P. Kokelaar, “How to Build An AppleSeed: A Parallel Macintosh Cluster for Numerically Intensive Computing,” Physica Scripta, T84, 85, 2000.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Viktor K. Decyk
    • 1
  • Dean E. Dauger
    • 2
  1. 1.Department of Physics and AstronomyUniversity of California, Los AngelesLos AngelesUSA
  2. 2.Dauger ResearchUSA

Personalised recommendations