Skip to main content

Detection and Estimation in Stochastic Systems with Time-Varying Parameters

  • Conference paper
  • First Online:
Stochastic Theory and Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 280))

Abstract

We give a brief survey of recent developments in change-point detection and diagnosis and in estimation of parameters that may undergo occasional changes. There is a large variety of detection and estimation procedures widely scattered in the engineering, economics, statistics and biomedical literature. These procedures can be broadly classified as sequential (or on-line) and fixed sample (or off-line). We focus on detection and estimation procedures that strike a suitable balance between computational complexity and statistical efficiency, and present some of their asymptotically optimal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bai, J. (1999) LIkelihood ratio tests for multiple structural changes, J. Econometrics 91, 299–323.

    Article  MATH  MathSciNet  Google Scholar 

  2. Bai, J. and Perron, P. (1998) Estimating and testing for multiple structural changes, Econometrica 66, 47–78.

    Article  MATH  MathSciNet  Google Scholar 

  3. Bansal, R. K. and Papantoni-Kazakos, P. (1986) An algorithm for detecting a change in a stochastic process, IEEE Trans. Information Theory 32, 227–235.

    Article  MATH  MathSciNet  Google Scholar 

  4. Barnard, G. A. (1959) Control charts and stochastic processes (with discussion), J. Roy. Statist. Soc. Ser. B 21, 239–271.

    Google Scholar 

  5. Basseville, M. and Nikiforov, I. V. (1993) Detection of Abrupt Changes: Theory and Applications, Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  6. Benveniste, A., Basseville, M., and Moustakides, G. (1987) The asymptotic local approach to change detection and model validation. IEEE Trans. Automatic Control 32, 583–592.

    Article  MATH  MathSciNet  Google Scholar 

  7. Benveniste, A., Metivier, M., and Priouret, P. (1987) Adaptive Algorithms and Stochastic Approximations, Springer-Verlag, New York.

    MATH  Google Scholar 

  8. Brown, R. L., Durbin, J., and Evans, J. M. (1975) Techniques for testing the constancy of regression relationships over time (with discussion), J. Roy. Statist. Soc. Ser. B 37, 149–192.

    MATH  MathSciNet  Google Scholar 

  9. H.P. Chan and T.L. Lai (2001) Saddlepoint approximations and nonlinear boundary crossing probabilities for Markov random walks. Tech. Report, Dept. Statistics, Stanford Univ.

    Google Scholar 

  10. Chan, H. P. and Lai, T. L. (2001) Maxima of Gaussian random fields and moderate deviation approximations to boundary crossing probabilities. Tech. Report, Dept. Statistics, Stanford Univ.

    Google Scholar 

  11. Chernoff, H. and Zacks, S. (1964) Estimating the current mean of a normal distribution which is subjected to change in time, Ann. Math. Statist. 35, 999–1018.

    Article  MATH  MathSciNet  Google Scholar 

  12. Davis, R. A., Huang, D., and Yao, Y. C. (1995) Testing for a change in parameter values and order of an autoregressive model, Ann. Statist. 23, 282–304.

    Article  MATH  MathSciNet  Google Scholar 

  13. Feingold, E., Brown, P. O., and Siegmund, D. (1993) Gaussian models for genetic linkage analysis using high resolution maps of identity-by-descent, Amer. J. Human Genetics 53, 234–251.

    Google Scholar 

  14. Frank, P. M. (1991) Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy-a survey and some new results, Automatica 26, 459–474.

    Article  Google Scholar 

  15. Guo, L. (1994) Stability of recursive tracking algorithms, SIAM J. Control and Optimization 32, 1195–1225.

    Article  MATH  MathSciNet  Google Scholar 

  16. Guo, L. and Ljung, L. (1995) Performance analysis of general tracking algorithms, IEEE Trans. Automatic Control 40, 1388–1402.

    Article  MATH  MathSciNet  Google Scholar 

  17. Guo, L., Ljung, L., and Priouret, P. (1993) Performance analysis of the forgetting factor RLS algorithm, Internat. J. Adaptive Control and Signal Processing 7, 525–537.

    Article  MATH  MathSciNet  Google Scholar 

  18. James, B., James, K. L., and Siegmund, D. (1987) Tests for a change-point, Biometrika 74, 71–84.

    Article  MATH  MathSciNet  Google Scholar 

  19. Karlin, S., Dembo, A., and Kawabata, T. (1990) Statistical composition of high scoring segments from molecular sequences, Ann. Statist. 18, 571–581.

    Article  MATH  MathSciNet  Google Scholar 

  20. Kim, D. and Kon, S. J. (1999) Structural change and time dependence in models of stock returns, J. Empirical Finance 6, 283–308.

    Article  Google Scholar 

  21. Lai, T. L. (1995) Sequential change-point detection in quality control and dynamical systems (with discussion), J. Roy. Statist. Soc. Ser. B 57, 613–658.

    MATH  MathSciNet  Google Scholar 

  22. Lai, T. L. (1998) Information bounds and quick detection of parameter changes in stochastic systems, IEEE Trans. Information Theory 44, 2917–2929.

    Article  MATH  Google Scholar 

  23. Lai, T. L. (2000) Sequential multiple hypothesis testing and efficient fault detection-isolation in stochastic systems, IEEE Trans. Information Theory 46, 595–608.

    Article  MATH  Google Scholar 

  24. Lai, T. L., Liu, H., and Liu, T. (2001) Change-point detection and bounded-complexity estimation of parameters undergoing occasional changes, Tech. Report, Dept. Statistics, Stanford Univ.

    Google Scholar 

  25. Lai, T. L. and Shan, J. Z. (1999) Efficient recursive algorithms for detection of abrupt changes in signals and control systems, IEEE Trans. Automatic Control 44, 952–966.

    Article  MATH  MathSciNet  Google Scholar 

  26. Lamoureux, C. G. and Lastrapes, W. D. (1990) Persistence in variance, structural change, and the GARCH model, J. Business and Econ. Statist. 8, 225–234.

    Article  Google Scholar 

  27. Lander, E. S. and Botstein, D. (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps, Genetics 121, 185–199.

    Google Scholar 

  28. Liu, J. and Lawrence, C. (1999) Bayesian inference on biopolymer models, Bioinformatics 15, 38–52.

    Article  Google Scholar 

  29. Lorden, G. (1971) Procedures for reacting to a change in distribution, Ann. Math. Statist. 42, 1897–1908.

    Article  MATH  MathSciNet  Google Scholar 

  30. Moustakides, G. (1986) Optimal procedures for detecting changes in distributions, Ann. Statist. 14, 1379–1387.

    Article  MATH  MathSciNet  Google Scholar 

  31. Nikiforov, I. V. (1995) A generalized change detection problem. IEEE Trans, Information Theory 41, 171–187.

    Article  MATH  Google Scholar 

  32. Nikiforov, I. V. (1996) New optimal approach to global positioning system/differential global positioning system integrity monitoring, J. Guidance, Control and Dynamics 19, 1023–1033.

    Article  MATH  Google Scholar 

  33. Nikiforov, I. V., Varavva, V., and Kireichikov, V. (1993) Application of statistical fault detection algorithms to navigation systems monitoring, Automatica 29, 1275–1290.

    Article  Google Scholar 

  34. Page, E. S. (1954) Continuous inspection schemes, Biometrika 41, 100–115.

    MATH  MathSciNet  Google Scholar 

  35. Parkinson, B. W. and Axelrad, P. (1988) Autonomous GPS integrity monitoring using the pseudorange residual, Navigation 35, 255–274.

    Google Scholar 

  36. Patton, R. J., Frank, P. M. and Clark, R. N. (1989) Fault Diagnosis in Dynamic Systems: Theory and Applications. Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  37. Quandt, R. E. (1960) Tests of the hypothesis that a linear regression system obeys two separate regimes, J. Amer. Statist. Assoc. 55, 324–330.

    Article  MATH  MathSciNet  Google Scholar 

  38. Shiryayev, A. N. (1978) Optimal Stopping Rules. Springer-Verlag, New York.

    MATH  Google Scholar 

  39. Siegmund, D. and Venkatraman, E. S. (1995) Using the generalized likelihood ratio statistics for sequential detection of a change-point, Ann. Statist. 23, 255–271.

    Article  MATH  MathSciNet  Google Scholar 

  40. Willsky, A. S. and Jones, H. L. (1976) A generalized likelihood ratio approach to detection and estimation of jumps in linear systems, IEEE Trans. Automatic Control 21, 108–112.

    Article  MATH  MathSciNet  Google Scholar 

  41. Yakir, B. (1994) Optimal detection of a change in distribution when the observations form a Markov chain with a finite state space. In Change-point Problems, E. Carlstein et al., eds., IMS Monograph series 23, 346–358.

    Google Scholar 

  42. Yao, Y. C. (1984) Estimation of a noisy discrete-time step function: Bayes and empirical Bayes approaches, Ann. Statist. 12, 1434–1447.

    Article  MATH  MathSciNet  Google Scholar 

  43. Zhang, Q., Basseville, M., and Benveniste, A. (1994) Early warning of slight changes in systems and plants with application to condition based maintenance, Automatica 30, 95–114.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lai, T.L. (2002). Detection and Estimation in Stochastic Systems with Time-Varying Parameters. In: Pasik-Duncan, B. (eds) Stochastic Theory and Control. Lecture Notes in Control and Information Sciences, vol 280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48022-6_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-48022-6_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43777-2

  • Online ISBN: 978-3-540-48022-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics