Skip to main content

An Application of Automatic Theorem Proving in Computer Vision

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1669))

Abstract

Getting accurate construction of tridimensional CAD models is a field of great importance: with the increasing complexity of the models that modeling tools can manage nowadays, it becomes more and more necessary to construct geometrically accurate descriptions. Maybe the most promising technique, because of its full generality, is the use of automatic geometric tools: these can be used for checking the geometrical coherency and discovering geometrical properties of the model. In this paper, we describe an automatic method for constructing the model of a given geometrical configuration and for discovering the theorems of this configuration. This approach motivated by 3D modeling problems is based on characteristic set techniques and generic polynomials in the bracket algebra.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Bondyfalat and S. Bougnoux. Imposing Euclidean Constraints during Self-Calibration Processes. In Proc. ECCV98 Workshop SMILE, 1998. 211

    Google Scholar 

  2. S. Bougnoux. From Projective to Euclidean Space under any Practical Situation, a Criticism of Self-Calibration. In Proc. of the 6th International Conference on Computer Vision, pages 790–796, Bombay, India, Jan. 1998, IEEE Computer Society Press. 211

    Google Scholar 

  3. S.-C. Chou. Mechanical GeometryThe orem Proving. Reidel, Dordrecht Boston, 1988. 217

    Google Scholar 

  4. S.-C. Chou and X.-S. Gao. Ritt-Wu’s Decomposition Algorithm and Geometry Theorem Proving. In Proc. CADE-10, pages 202–220, Kaiserslautern, Germany, 1990. 214

    Google Scholar 

  5. S.-C. Chou, X.-S. Gao, and J.-Z. Zhang. Machine Proofs in Geometry: Automated Production of Readable Proofs for GeometryPr oblems, volume 6 of Series on Applied Mathematics. World Scientific, 1994. 215, 217

    Google Scholar 

  6. S.-C. Chou, W. F. Schelter, and J.-G. Yang. Characteristic Sets and Gröbner Bases in Geometry Theorem Proving. In Resolution of Equations in Algebraic Structures, pages 33–92. Academic Press, 1989. 214

    Google Scholar 

  7. H. Crapo and J. Richter-Gebert. Automatic Proving of Geometric Theorems. In Invariant Methods in Discrete and Computational Geometry, pages 167–196, 1995. 214

    Google Scholar 

  8. A. Crumeyrolle. Orthogonal and Simplectic Clifford Algebra. Kluwer Academic Plublishers, 1990. 215

    Google Scholar 

  9. P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and Rendering Architecture from Photographs: A Hybrid Geometry-and Image-Based Approach. In Proc. SIGGRAPH, pages 11–20, New Orleans, Aug. 1996. 207, 208

    Google Scholar 

  10. O. Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, 1993. 207

    Google Scholar 

  11. T. Havel. Some Examples of the Use of Distances as Coordinates for Euclidean Geometry. Journal of Symbolic Computation, 11: 579–593, 1991. 215

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Kapur and J. L. Mundy, editors. Geometric Reasoning. MIT Press, Cambridge, 1989. 208, 231

    Google Scholar 

  13. D. Kapur and J. L. Mundy. Wu’s Method and its Application to Perspective Viewing. In Geometric Reasoning [12], pages 15–36. 209

    Google Scholar 

  14. B. Mourrain. Approche Effective de la Théorie des Invariants des Groupes Classiques. PhD thesis, Ecole Polytechnique, Sept. 1991. 215

    Google Scholar 

  15. B. Mourrain. Géométrie et Interprétation Générique; un Algorithme. In Effective Methods in Algebraic Geometry(MEGA’90), volume 94 of Progress in Math., pages 363–377, Castiglioncello (Italy), 1991. Birkhäuser. 217

    MathSciNet  Google Scholar 

  16. P. Poulin, M. Ouimet, and M.-C. Frasson. Interactively Modeling withPh otogrammetry. In Proc. of Eurographics Workshop on Rendering 98, pages 93–104, June 1998. 208

    Google Scholar 

  17. J. Richter-Gebert. Mechanical Theorem Proving in Projective Geometry. Annals of Mathematics and Artificial Intelligence, 13: 139–172, 1995. 214

    Article  MATH  MathSciNet  Google Scholar 

  18. S. Stifter. Geometry Theorem Proving in Vector Spaces by Means of Gröbner Bases. In M. Bronstein, editor, Proc. ISSAC’93, ACM Press, pages 301–310, Jul. 1993. 215

    Google Scholar 

  19. D. Wang. CharSets 2.0-A Package for Decomposing Polynomial Systems. Preprint, LEIBNIZ-Institut IMAG, Feb. 1996. 214

    Google Scholar 

  20. D. Wang. Zero Decomposition for Theorem Proving in Geometry. In Proc. IMACS International Conference on Applications of Computer Algebra, Albuquerque, USA, May 1995. 214

    Google Scholar 

  21. D. Wang. Geometry Machines: From AI to SMC. In Proc. AISMC-3, volume 1138 of LNCS, pages 213–239, 1996. 214

    Google Scholar 

  22. D. Wang. Clifford Algebraic Calculus for Geometric Reasoning withA pplication to Computer Vision, volume 1360 of Springer’s LNAI, pages 115–140. Springer, 1997. 209, 215

    Google Scholar 

  23. D. Wang. Gröbner Bases Applied to Geometric Theorem Proving and Discovering. In B. Buchberger and F. Winkler, editors, Gröbner Bases and Applications, pages 281–301. Cambridge Univ. Press, 1998. 214, 219

    Google Scholar 

  24. N. White. Multilinear Cayley Factorization. Journal of Symbolic Computation, 11(5 & 6): 421–438, May/June 1991. 230

    Article  MathSciNet  MATH  Google Scholar 

  25. W.-t Wu. Basic Principles of Mechanical Theorem Proving in Elementary Geometries. J. Automated Reasoning, 2: 221–252, 1986. 214

    Article  MATH  Google Scholar 

  26. W.-t Wu. Mechanical Theorem Proving in Geometries: Basic Principles (translated from Chinese by X. Jin and D. Wang). Texts and Monographie in Symbolic Computation. Springer, 1994. 214

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bondyfalat, D., Mourrain, B., Papadopoulo, T. (1999). An Application of Automatic Theorem Proving in Computer Vision. In: Automated Deduction in Geometry. ADG 1998. Lecture Notes in Computer Science(), vol 1669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47997-X_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-47997-X_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66672-1

  • Online ISBN: 978-3-540-47997-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics