Skip to main content

Decomposing Algebraic Varieties

  • Conference paper
  • First Online:
Automated Deduction in Geometry (ADG 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1669))

Included in the following conference series:

Abstract

An algebraic variety is a geometric figure defined by the zeros of a set of multivariate polynomials. This paper explains how to adapt two general zero decomposition methods for efficient decomposition of affine algebraic varieties into unmixed and irreducible components. Two devices based on Gröbner bases are presented for computing the generators of the saturated ideals of triangular sets. We also discuss a few techniques and variants which, when properly used, may speed up the decomposition. Experiments for a set of examples are reported with comparison to show the performance and effectiveness of such techniques, variants and the whole decomposition methods. Several theoretical results are stated along with the description of algorithms. The paper ends with a brief mention of some applications of variety decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubry, P., Lazard, D., Moreno Maza, M. (1999): On the theories of triangular sets. J. Symb. Comput. 28: 105–124. 188

    Article  MATH  MathSciNet  Google Scholar 

  2. Buchberger, B. (1985): Gröbner bases: An algorithmic method in polynomial ideal theory. In: Multidimensional systems theory (N. K. Bose, ed.), D. Reidel Publ. Co., Dordrecht Boston, pp. 184–232. 181, 187, 188

    Google Scholar 

  3. Chou, S.-C., Gao, X.-S. (1990): Ritt-Wu’s decomposition algorithm and geometry theorem proving. In: Proceedings CADE-10, Kaiserslautern, July 24–27, 1990, Springer-Verlag, Berlin Heidelberg, pp. 207–220 (Lecture notes in computer science, vol. 449) [also as Tech. Rep. TR-89-09, Department of Computer Science, The Univ. of Texas at Austin, USA]. 183, 189, 191, 200

    Google Scholar 

  4. Chou, S.-C., Schelter, W. F., Yang, J.-G. (1990): An algorithm for constructing Gröbner bases from characteristic sets and its application to geometry. Algorithmica 5: 147–154. 181, 187

    Article  MATH  MathSciNet  Google Scholar 

  5. Cox, D., Little, J., O’Shea, D. (1992): Ideals,vari eties, and algorithms. Springer-Verlag, New York Berlin. 181, 187, 188, 202

    Google Scholar 

  6. Eisenbud, D., Huneke, C., Vasconcelos, W. (1992): Direct methods for primary decomposition. Invent. Math. 110: 207–235. 202

    Article  MATH  MathSciNet  Google Scholar 

  7. Gao, X.-S., Chou, S.-C. (1993): On the dimension of an arbitrary ascending chain. Chinese Sci. Bull. 38: 799–804. 181, 187, 189, 200

    MATH  Google Scholar 

  8. Gianni, P., Trager, B., Zacharias, G. (1988): Gröbner bases and primary decomposition of polynomial ideals. J. Symb. Comput. 6: 149–167. 181, 187, 188

    Article  MathSciNet  MATH  Google Scholar 

  9. Kalkbrener, M. (1993): A generalized Euclidean algorithm for computing triangular representations of algebraic varieties. J. Symb. Comput. 15: 143–167. 181

    Article  MATH  MathSciNet  Google Scholar 

  10. Kalkbrener, M. (1994): Prime decompositions of radicals in polynomial rings. J. Symb. Comput. 18: 365–372. 181

    Article  MATH  MathSciNet  Google Scholar 

  11. Lazard, D. (1991): A new method for solving algebraic systems of positive dimension. Discrete Appl. Math. 33: 147–160. 181

    Article  MATH  MathSciNet  Google Scholar 

  12. Ritt, J. F. (1950): Differential algebra. Am. Math. Soc., New York. 181, 183

    Google Scholar 

  13. Shimoyama, T., Yokoyama, K. (1996): Localization and primary decomposition of polynomial ideals. J. Symb. Comput. 22: 247–277. 202

    Article  MATH  MathSciNet  Google Scholar 

  14. Wang D. (1989): A method for determining the finite basis of an ideal from its characteristic set with application to irreducible decomposition of algebraic varieties. Math. Mech. Res. Preprints 4: 124–140. 181, 187

    Google Scholar 

  15. Wang, D. (1992): Irreducible decomposition of algebraic varieties via characteristic sets and Gröbner bases. Comput. Aided Geom. Des. 9: 471–484. 181, 196, 200

    Article  MATH  Google Scholar 

  16. Wang, D. (1993): An elimination method for polynomial systems. J. Symb. Comput. 16: 83–114. 181, 183, 186

    Article  MATH  Google Scholar 

  17. Wang, D. (1995): An implementation of the characteristic set method in Maple. In: Automated practical reasoning: Algebraic approaches (J. Pfalzgraf, D. Wang, eds.). Springer-Verlag, Wien New York, pp. 187–201. 183, 200

    Google Scholar 

  18. Wang, D. (1996): Solving polynomial equations: Characteristic sets and triangular systems. Math. Comput. Simulation 42(4–6): 339–351. 197, 200

    Article  MathSciNet  Google Scholar 

  19. Wang, D. (1998): Decomposing polynomial systems into simple systems. J. Symb. Comput. 25: 295–314. 181, 184

    Article  MATH  Google Scholar 

  20. Wang, D. (1998): Unmixed and prime decomposition of radicals of polynomial ideals. ACM SIGSAM Bull. 32(4): 2–9. 181, 187

    Article  MATH  Google Scholar 

  21. Wang, D. (1999): Elimination methods Springer-Verlag, Wien New York (in press). 181, 184, 185, 186, 187, 188, 189, 191, 196, 198

    Google Scholar 

  22. Wu, W.-t. (1984): Basic principles of mechanical theorem proving in elementary geometries. J. Syst. Sci. Math. Sci. 4: 207–235. 180, 181, 183, 191

    Google Scholar 

  23. Wu, W.-t. (1989): On the generic zero and Chow basis of an irreducible ascending set. Math. Mech. Res. Preprints 4: 1–21. 181

    Google Scholar 

  24. Yang, L., Zhang, J.-Z. (1994): Searching dependency between algebraic equations: An algorithm applied to automated reasoning. In: Artificial intelligence in mathematics (Johnson, J., McKee, S., Vella, A., eds.). Oxford Univ. Press, Oxford, pp. 147–156.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, D. (1999). Decomposing Algebraic Varieties. In: Automated Deduction in Geometry. ADG 1998. Lecture Notes in Computer Science(), vol 1669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47997-X_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-47997-X_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66672-1

  • Online ISBN: 978-3-540-47997-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics