Recovery of Reflectances and Varying Illuminants from Multiple Views

  • Q.-Tuan Luong
  • Pascal Fua
  • Yvan Leclerc
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2352)


We introduce a new methodology for radiometric reconstruction from multiple images. It opens new possibilities because it allows simultaneous recovery of varying unknown illuminants (one per image), surface albedoes, and cameras’ radiometric responses. Designed to complement geometric reconstruction techniques, it only requires as input the geometry of the scene and of the cameras. Unlike photometric stereo approaches, it is not restricted to images taken from a single viewpoint. Linear and non-linear implementations in the Lambertian case are proposed; simulation results are discussed and compared to related work to demonstrate the gain in stability; and results on real images are shown.


Gray Level Surface Element Multiple Image Multiple View Recovery Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E. Angelopoulou and J. Williams. Photometric surface analysis in a tri-luminal environment. In ICCV, pages 442–447, 1999.Google Scholar
  2. 2.
    R. Baribeau, M. Rioux, and G. Godin. Color reflectance modeling using a polychromatic laser range sensor. PAMI, 14(2):263–269, 1992.Google Scholar
  3. 3.
    P.N. Belhumeur, D.J. Kriegman, and A.L. Yuille. The bas-relief ambiguity. IJCV, 35(1):33–44, November 1999.Google Scholar
  4. 4.
    P. Debevec and J. Malik. Recovering high dynamic range radiance maps from photographs. SIGGRAPH, 31:369–378, 1997.CrossRefGoogle Scholar
  5. 5.
    M.A Fischler and R.C Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications ACM, 24(6):381–395, 1981.CrossRefMathSciNetGoogle Scholar
  6. 6.
    P. Fua. Regularized Bundle-Adjustment to Model Heads from Image Sequences without Calibration Data. International Journal of Computer Vision, 38(2):153–171, July 2000.Google Scholar
  7. 7.
    A.S. Georghiades, P.N. Belhumeur, and D.J. Kriegman. Illumination-based image synthesis: Creating novel images of human faces under differing pose and lighting. In IEEE Workshop on multiple-view modeling and analysis of visual scenes, pages 47–54, 1999.Google Scholar
  8. 8.
    H. Hayakawa. Photometric stereo under a light-source with arbitrary motion. JOSA-A, 11(11):3079–3089, November 1994.Google Scholar
  9. 9.
    B.K.P. Horn. Robot Vision. MIT Press, 1986.Google Scholar
  10. 10.
    B.K.P. Horn and M.J. Brooks. Shape from Shading. MIT Press, 1989.Google Scholar
  11. 11.
    K. Ikeuchi and K. Sato. Determining reflectance properties of an object using range and brightness images. PAMI, 13(11):1139–1153, 1991.Google Scholar
  12. 12.
    Q.T. Luong, P. Fua, and Y. G. Leclerc. The Radiometry of Multiple Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(1):19–33, January 2002.Google Scholar
  13. 13.
    S. Marschner. Inverse rendering for computer graphics. PhD thesis, Cornell University, 1998.Google Scholar
  14. 14.
    S. Marschner and D. Greenberg. Inverse lighting for photography. In IST/SID Fifth Color Imaging Conference, pages 262–265, 1997.Google Scholar
  15. 15.
    T. Mitsunaga and S.K. Nayar. Radiometric self calibration. In CVPR, pages I:374–380, 1999.Google Scholar
  16. 16.
    Y. Moses. Face recognition: generalization to novel images. PhD thesis, The Weizmann Institute of Science, Israel, 1993.Google Scholar
  17. 17.
    N. Mukawa. Estimation of shape, reflection coefficients and illuminant direction from image sequences. In ICCV, pages 507–512, 1990.Google Scholar
  18. 18.
    K. Nishino, Z. Zhang, and K. Ikeuchi. Determining Reflectance Parameters and Illumination Distribution from a Sparse Set of Images for View-Dependent Image Synthesis. In International Conference on Computer Vision, pages 599–606, Vancouver, Canada, July 2001.Google Scholar
  19. 19.
    R Ramamoorthi and P. Hanrahan. A signal processing framework for inverse rendering. In SIGGRAPH, pages 117–128, 2001.Google Scholar
  20. 20.
    I. Sato, Y. Sato, and K. Ikeuchi. Illumination distribution from brightness in shadows: Adaptive estimation of illumination distribution with unknown reflectance properties in shadow regions. In ICCV, pages 875–883, 1999.Google Scholar
  21. 21.
    M. Sato, Y. Wheeler and K. Ikeuchi. Object shape and reflectance modeling from observation. In SIGGRAPH, pages 379–387, 1997.Google Scholar
  22. 22.
    A. Shashua. On photometric issues in 3d visual recognition from a single 2d image. IJCV, 21(1–2):99–122, 1997.CrossRefGoogle Scholar
  23. 23.
    W. Silver. Determining shape and reflectance using multiple images. PhD thesis, MIT, Cambridge, MA, 1990.Google Scholar
  24. 24.
    R.J. Woodham. Photometric method for determining surface orientation from multiple images. OptEng, 19(1):139–144, 1980.Google Scholar
  25. 25.
    Y. Yu, P. Debevec, J. Malik, and T. Hawkins. Inverse global illumination: Recovering reflectance models of real scenes from photographs. SIGGRAPH, pages 215–224, August 1999.Google Scholar
  26. 26.
    A.L. Yuille, D. Snow, R. Epstein, and P.N. Belhumeur. Determining generative models of objects under varying illumination: Shape and albedo from multiple images using svd and integrability. IJCV, 35(3):1–20, 1999.CrossRefGoogle Scholar
  27. 27.
    Q. Zheng and R. Chellappa. Estimation of illuminant direction, albedo, and shape from shading. PAMI, 13(7):680–702, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Q.-Tuan Luong
    • 1
  • Pascal Fua
    • 2
  • Yvan Leclerc
    • 1
  1. 1.AI CenterSRI InternationalMenlo ParkUSA
  2. 2.Computer Graphics LabEPFLLausanneSwitzerland

Personalised recommendations