Skip to main content

Improved Rounding Techniques for the MAX 2-SAT and MAX DI-CUT Problems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2337))

Abstract

Improving and extending recent results of Matuura and Matsui, and less recent results of Feige and Goemans, we obtain improved approximation algorithms for the MAX 2-SAT and MAX DI-CUT problems. These approximation algorithms start by solving semidefinite programming relaxations of these problems. They then rotate the solution obtained, as suggested by Feige and Goemans. Finally, they round the rotated vectors using random hyperplanes chosen according to skewed distributions. The performance ratio obtained by the MAX 2-SAT algorithm is at least 0.940, while that obtained by the MAX DI-CUT algorithm is at least 0.874. We show that these are essentially the best performance ratios that can be achieved using any combination of prerounding rotations and skewed distributions of hyperplanes, and even using more general families of rounding procedures. The performance ratio obtained for the MAX 2-SAT problem is fairly close to the inapproximability bound of about 0.954 obtained by Håstad. The performance ratio obtained for the MAX DI-CUT problem is very close to the performance ratio of about 0.878 obtained by Goemans and Williamson for the MAX CUT problem.

This research was supported by the ISRAEL SCIENCE FOUNDATION (grant no. 246/01).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon and B. Sudakov. Bipartite subgraphs and the smallest eigenvalue. Combinatorics, Probability & Computing, 9:1–12, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Alon, B. Sudakov, and U. Zwick. Constructing worst case instances for semidefinite programming based approximation algorithms. SIAM Journal on Discrete Mathematics, 15:58–72, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  3. U. Feige and M.X. Goemans. Approximating the value of two prover proof systems, with applications to MAX-2SAT and MAX-DICUT. In Proceedings of the 3rd Israel Symposium on Theory and Computing Systems, Tel Aviv, Israel, pages 182–189, 1995.

    Google Scholar 

  4. U. Feige and M. Langberg. The RPR2 rounding technique for semidefinite programs. In Proceedings of the 28th International Colloquium on Automata, Languages and Programming, Crete, Greece, pages 213–224, 2001.

    Google Scholar 

  5. M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42:1115–1145, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Håstad. Some optimal inapproximability results. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing, El Paso, Texas, pages 1–10, 1997. Full version available as E-CCC Report number TR97-037.

    Google Scholar 

  7. H. Karloff. How good is the Goemans-Williamson MAX CUT algorithm? SIAM Journal on Computing, 29:336–350, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Matuura and T. Matsui. 0.863-approximation algorithm for MAX DICUT. In Approximation, Randomization and Combinatorial Optimization: Algorithms and Techniques, Proceedongs of APPROX-RANDOM’01, Berkeley, California, pages 138–146, 2001.

    Google Scholar 

  9. S. Matuura and T. Matsui. 0.935-approximation randomized algorithm for MAX 2SAT and its derandomization. Technical Report METR 2001-03, Department of Mathematical Engineering and Information Physics, the University of Tokyo, Japan, September 2001.

    Google Scholar 

  10. S. Mahajan and H. Ramesh. Derandomizing approximation algorithms based on semidefinite programming. SIAM Journal on Computing, 28:1641–1663, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Trevisan, G.B. Sorkin, M. Sudan, and D.P. Williamson. Gadgets, approximation, and linear programming. SIAM Journal on Computing, 29:2074–2097, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  12. U. Zwick. Analyzing the MAX 2-SAT and MAX DI-CUT approximation algorithms of Feige and Goemans. Submitted for publication, 2000.

    Google Scholar 

  13. U. Zwick. Computer assisted proof of optimal approximability results. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, California, pages 496–505, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lewin, M., Livnat, D., Zwick, U. (2002). Improved Rounding Techniques for the MAX 2-SAT and MAX DI-CUT Problems. In: Cook, W.J., Schulz, A.S. (eds) Integer Programming and Combinatorial Optimization. IPCO 2002. Lecture Notes in Computer Science, vol 2337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47867-1_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-47867-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43676-8

  • Online ISBN: 978-3-540-47867-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics