A Faster Scaling Algorithm for Minimizing Submodular Functions

  • Satoru Iwata
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2337)


Combinatorial strongly polynomial algorithms for minimizing submodular functions have been developed by Iwata, Fleischer, and Fujishige (IFF) and by Schrijver. The IFF algorithm employs a scaling scheme for submodular functions, whereas Schrijver’s algorithm exploits distance labeling. This paper combines these two techniques to yield a faster combinatorial algorithm for submodular function minimization. The resulting algorithm improves over the previously best known bound by an almost linear factor in the size of the underlying ground set.


Directed Graph Greedy Algorithm Polynomial Algorithm Combinatorial Algorithm Arithmetic Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. H. Cunningham: Testing membership in matroid polyhedra. J. Combinatorial Theory, Ser. B, 36 (1984) 161–188.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    W. H. Cunningham: On submodular function minimization. Combinatorica 5 (1985) 185–192.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    J. Edmonds: Submodular functions, matroids, and certain polyhedra. Combinatorial Structures and Their Applications, R. Guy, H. Hanani, N. Sauer, and J. Schönheim, eds., Gordon and Breach, pp. 69–87, 1970.Google Scholar
  4. 4.
    L. Fleischer and S. Iwata: A push-relabel framework for submodular function minimization and applications to parametric optimization. Discrete Appl. Math., to appear.Google Scholar
  5. 5.
    L. Fleischer, S. Iwata, and S. T. McCormick: A faster capacity scaling algorithm for submodular flow. Math. Programming, to appear.Google Scholar
  6. 6.
    S. Fujishige: Submodular Functions and Optimization, North-Holland, 1991.Google Scholar
  7. 7.
    M. Grötschel, L. Lovász, and A. Schrijver: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1 (1981) 169–197.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    M. Grötschel, L. Lovász, and A. Schrijver: Geometric Algorithms and Combinatorial Optimization, Springer-Verlag, 1988.Google Scholar
  9. 9.
    S. Iwata: A capacity scaling algorithm for convex cost submodular flows. Math. Programming 76 (1997) 299–308.MathSciNetzbMATHGoogle Scholar
  10. 10.
    S. Iwata: A fully combinatorial algorithm for submodular function minimization. J. Combinatorial Theory, Ser. B, to appear.Google Scholar
  11. 11.
    S. Iwata, L. Fleischer, and S. Fujishige: A combinatorial strongly polynomial algorithm for minimizing submodular functions. J. ACM 48 (2001) 761–777.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    L. Lovász: Submodular functions and convexity, Mathematical Programming-The State of the Art, A. Bachem, M. Grötschel, and B. Korte, eds., Springer-Verlag, 1983, pp. 235–257.Google Scholar
  13. 13.
    A. Schrijver: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Combinatorial Theory, Ser. B, 80 (2000) 346–355.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    L. S. Shapley: Cores of convex games. Int. J. Game Theory 1 (1971) 11–26.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Satoru Iwata
    • 1
  1. 1.Department of Mathematical InformaticsUniversity of TokyoTokyoJapan

Personalised recommendations