Skip to main content

Effects of Hydrodynamic and Interfacial Forces on Plant Cell Suspension Systems

  • Chapter
  • First Online:
Influence of Stress on Cell Growth and Product Formation

Abstract

Plant cells are perceived to be sensitive to the hydrodynamic environment in conventional bioreactors. Heightened sensitivity, relative to most bacterial cultures, is frequently attributed to larger plant cell sizes, extensive vacuolization and aggregation patterns. Early studies of shear sensitivity focused on cell lysis and/or loss of viability. More recently, an extensive ar- ray of sub-lethal responses has been identified. A fuller understanding of these sub-lytic ef- fects may assist in the optimization of large-scale cultivation conditions. This paper reviews recent work on the hydrodynamic shear sensitivity of plant cell systems, under cultivation conditions and in purpose-built shearing devices. The relevance of different approaches to the characterization of the intensity of a given hydrodynamic environment is discussed. Indicators of cell response to hydrodynamic stress are evaluated. The potential significance of cellular defense mechanisms, observed in response to mechanical stimulants, is identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Takahashi S, Fujita Y (1991) In: Komamine A, Misawa M, DiCosmo F (eds) Plant cell culture in Japan. CMC, Tokyo, p 72

    Google Scholar 

  2. Furuya T, Ushiyama K (1994) In: Shargool PD, Ngo TT (eds) Biotechnological applications of plant cultures. CRC, Boca Raton, p 1

    Google Scholar 

  3. Wu J, Zhong JJ (1999) J Biotechnol 68:89

    Article  CAS  Google Scholar 

  4. Hara Y (1996) In: DiCosmo F, Misawa M (eds) Plant cell culture secondary metabolism-towards industrial application. CRC, Boca Raton, p 187

    Google Scholar 

  5. Sahai O (1994) In: Gabelman A (ed) Bioprocess production of flavor, fragrance and color ingredients. John Wiley, New York, p 239

    Google Scholar 

  6. Su WW (1995) Appl Biochem Biotechnol 50:189

    Article  CAS  Google Scholar 

  7. Goldstein WE (1999) In: Fu T-J, Singh G, Curtis WR (eds) Plant cell culture for the production of food ingredients. Kluwer Academic, New York, p 195

    Google Scholar 

  8. Kieran PM, MacLoughlin PF, Malone DM (1997) J Biotechnol 59:39

    Article  CAS  Google Scholar 

  9. Zhong JJ, Yu JT, Yoshida T (1995) World J Microb Biotechnol 11:481

    Article  Google Scholar 

  10. Ritterhaus E, Ulrich J, Westphal K (1990) Int Assoc Plant Tissue Cult Newsletter 61:2

    Google Scholar 

  11. Curtis WR (1999) In: Fu TJ, Singh G, Curtis WR (eds) Plant cell culture for the production of food ingredients. Kluwer Academic, New York, p 225

    Google Scholar 

  12. Prokop A, Bajpai RK (1992) Adv Appl Microbiol 37:165

    Article  CAS  Google Scholar 

  13. Hua J, Erickson LE, Yiin TY, Glasgow LA (1993) Crit Rev Biotechnol 13:305

    Article  CAS  Google Scholar 

  14. Thomas CR (1990) In: Winkler MA (ed) Critical reports in applied chemistry: Chemical engineering problems in biotechnology, vol 29. Elsevier Applied Science, London, p 23

    Google Scholar 

  15. Joshi JB, Elias CB, Patole MS (1996) Chem Eng J 62:121

    CAS  Google Scholar 

  16. Merchuk JC (1991) Adv Biochem Eng Biotechnol 44:65

    CAS  Google Scholar 

  17. Meijer JJ, ten Hoopen HJG, Luyben KChAM, Libbenga KR (1993) Enzyme Microb Technol 15:234

    Article  CAS  Google Scholar 

  18. Namdev PK, Dunlop EH (1995) Appl Biochem Biotechnol 54:109

    Article  CAS  Google Scholar 

  19. Chalmers JJ (1998) Appl Mech Rev 51:113

    Article  Google Scholar 

  20. Carpita N (1985) Plant Physiol 79:485

    Article  Google Scholar 

  21. Taiz L (1984) Ann Rev Plant Physiol 35:585

    CAS  Google Scholar 

  22. Matile P (1978) Ann Rev Plant Physiol 29:193

    Article  CAS  Google Scholar 

  23. Curtis WR, Emery AH (1993) Biotechnol Bioeng 42:520

    Article  CAS  Google Scholar 

  24. Zhong JJ, Seki T, Kinoshita SI, Yoshida T (1992) Biotechnol Bioeng 40:1256

    Article  CAS  Google Scholar 

  25. Ballica R, Ryu DDY (1993) Biotechnol Bioeng 42:1181

    Article  CAS  Google Scholar 

  26. Jolicoeur M, Chavarie C, Carreau PJ, Archambault J (1992) Biotechnol Bioeng 39:511

    Article  CAS  Google Scholar 

  27. Tanaka H (1981) Biotechnol Bioeng 23:1203

    Article  Google Scholar 

  28. Kato A, Kawazoe S, Soh Y (1978) J Ferment Technol 56:224

    Google Scholar 

  29. Kieran PM (1993) PhD thesis, University College Dublin

    Google Scholar 

  30. Rodriguéz-Monroy M, Galindo E (1999) Enzyme Microb Technol 10:687

    Article  Google Scholar 

  31. Ballica R, Ryu DDY, Powell RL, Owen D (1992) Biotechnol Prog 8:413

    Article  CAS  Google Scholar 

  32. Doran P (1993) Adv Biochem Eng Biotechnol 48:115

    Google Scholar 

  33. Tanaka H, Nishijima F, Suwa M, Iwanoto T (1983) Biotechnol Bioeng 25:2359

    Article  CAS  Google Scholar 

  34. Shibasaki N, Hirose K, Yonemoto T, Takadi T (1992) J Chem Technol Biotechnol 53:359

    CAS  Google Scholar 

  35. Dubuis B, Plüss R, Romette JL, Kut OM, Prenosil JE, Bourne JR (1993) In: Nienow AW (ed) Bioreactor and bioprocess fluid dynamics, BHR Group Conference Series, vol 5. MEP, London, p 89

    Google Scholar 

  36. Fulzele DP, Heble MR (1994) J Biotechnol 35:1

    Article  CAS  Google Scholar 

  37. Matsushita T, Koga N, Ogawa K, Fujino K, Funatsu K (1994) In: Ryu DDY, Furusaki S (eds) Studies in plant science 4: Advances in plant biotechnology. Elsevier, Amsterdam, p 339

    Google Scholar 

  38. Baldyga J, Pohorecki R (1998) Appl Mech Rev 51:121

    Article  Google Scholar 

  39. Nienow AW (1998) Appl Mech Rev 51:3

    Article  Google Scholar 

  40. Kresta SM (1998) Can J Chem Eng 76:563

    Article  CAS  Google Scholar 

  41. Caulet PJC, van der Lans RGJM, Luyben KChAM (1996) Chem Eng J 62:193

    CAS  Google Scholar 

  42. Wei T, Willmarth WW (1992) J Fluid Mech 245:619

    Article  CAS  Google Scholar 

  43. Zhou G, Kresta SM (1998) Chem Eng Sci 53:2063

    Article  CAS  Google Scholar 

  44. Davies JT (1972) Turbulence phenomena. Academic Press, New York

    Google Scholar 

  45. Huang SY, Chen KW, Chen SY (1998) J Chin Inst Chem Engrs 29:171

    CAS  Google Scholar 

  46. Sumino Y, Akiyama S, Fukuda H (1972) J Ferment Technol 50:203

    Google Scholar 

  47. Sumino Y (1992) In: Furusaki S, Enolo I, Matsumo R (eds) Biochemical engineering for 2001. Springer-Verlag, Tokyo, p 207

    Google Scholar 

  48. Fujita M, Iwahori K, Tatsuta S, Yamakawa K (1994) J Ferment Bioeng 78:368

    Article  CAS  Google Scholar 

  49. Sinskey AJ, Fleischaker RJ, Tyo MA, Girard DJ, Wang DIC (1981) Ann NY Acad Sci 369:47

    Article  CAS  Google Scholar 

  50. Kato A, Shimizu Y, Nagai S (1975) J Ferment Bioeng 53:744

    CAS  Google Scholar 

  51. Leckie F, Scragg AH, Cliffe KC (1991) Biotechnol Bioeng 37:364

    Article  CAS  Google Scholar 

  52. Lima Costa ME, Rapaso S, Clemente A, Pais MSS, Cabral JMS (1997) In: Nienow AW (ed) Proc 4th Intl Conf Bioreactor and Bioprocess Fluid Dynamics, MEP, London, p 27

    Google Scholar 

  53. Kebler M, ten Hoopen HJG, Heijnen JJ, Furusaki S (1997) Biotechnol Tech 11:507

    Article  Google Scholar 

  54. Kieran PM, O’Donnell HJ, Malone DM, MacLoughlin PF (1995) Biotechnol Bioeng 45:415

    Article  CAS  Google Scholar 

  55. Takeda T, Seki M, Furusaki S (1994) J Chem Eng Jpn 27:466

    Article  CAS  Google Scholar 

  56. Takeda T, Kitagawa T, Takeuchi Y, Seki M, Furusaki S (1998) Can J Chem Eng 76:267

    Article  CAS  Google Scholar 

  57. Dunlop EH, Namdev PK, Rosenberg MZ (1994) Chem Eng Sci 49:2263

    Article  CAS  Google Scholar 

  58. Wongsamuth R, Doran PM (1997) J Chem Tech Biotechnol 69:15

    Article  CAS  Google Scholar 

  59. MacLoughlin PF, Malone DM, Murtagh JT, Kieran PM (1998) Biotechnol Bioeng 58:595

    Article  CAS  Google Scholar 

  60. Cherry RS, Papoutsakis ET (1986) BioprocEng 1:29

    Article  Google Scholar 

  61. Croughan MS, Hamel JF, Wang DIC (1988) Biotechnol Prog 5:137

    Google Scholar 

  62. Metzner AB, Otto RE (1957) AIChE J 3:3

    Article  CAS  Google Scholar 

  63. Calderbank PH, Moo-Young MB (1959) Trans IChemE 37:26

    Google Scholar 

  64. Calderbank PH, Moo-Young MB (1961) Trans IChemE 39:337

    CAS  Google Scholar 

  65. Bowen RL (1986) Chem Eng 93:55

    CAS  Google Scholar 

  66. van’t Riet K, Smith JM (1975) Chem Eng Sci 30:1093

    Article  Google Scholar 

  67. Wichterle K, Kadlec M, Zak L, Mitschika P (1984) Chem Eng Commun 26:25

    Article  CAS  Google Scholar 

  68. Robertson B, Ulbrecht JJ (1987) In: Ho CS, Oldshue JY (eds) Biotechnology processes: Scale-up and mixing. AIChE, New York, p 31

    Google Scholar 

  69. Rosenberg MZ (1987) PhD thesis, Washington University, St Louis

    Google Scholar 

  70. Matsuo H, Unno H (1981) ASCE J Environ Eng Div 107:527

    CAS  Google Scholar 

  71. Schlichting H (1973) Boundary layer theory, 7th edn. McGraw Hill, New York

    Google Scholar 

  72. Meijer JJ (1989) PhD thesis, Delft University of Technology

    Google Scholar 

  73. DiCosmo F, Misawa M (1985) Trends Biotechnol 3:318

    Article  CAS  Google Scholar 

  74. Eilert U (1987) In: Constabel F, Vasil I (eds) Cell culture and somatic cell genetics of plants, vol 4. Academic Press, San Diego, p 153

    Google Scholar 

  75. Scragg AH, Allan EJ, Leckie F (1988) Enzyme Microb Technol 10:361

    Article  Google Scholar 

  76. Horsch RB, Jones GE (1980) In Vitro 80:103

    Google Scholar 

  77. Hooker BS, Lee JM, An G (1989) Enzyme Microb Technol 11:484

    Article  CAS  Google Scholar 

  78. Curtin FT (1991) PhD thesis, University College Dublin

    Google Scholar 

  79. Gaff DF, Okong’o-ogola O (1971) J Exp Bot 22:756

    Article  Google Scholar 

  80. Widholm JM (1972) Stain Technol 47:189

    CAS  Google Scholar 

  81. Swain D, De DN (1994) Indian J Exp Bot 32:501

    Google Scholar 

  82. Tucker KG, Chalder S, Al-Rubeai M, Thomas CR (1994) Enzyme Microb Technol 16:29

    Article  CAS  Google Scholar 

  83. Smith MAL, Reid JF (1996) In: DiCosmo F, Misawa M (eds) Plant cell culture secondary metabolism-towards industrial application. CRC, Boca Raton, chap 3, p 53

    Google Scholar 

  84. Markx GH, ten Hoopen HJG, Meijer JJ, Vinke KL (1991) J Biotechnol 19:145

    Article  CAS  Google Scholar 

  85. Parr AJ, Smith JI, Robins RJ, Rhodes MJC (1984) Plant Cell Rep 3:161

    Article  Google Scholar 

  86. Abu-Reesh I, Kargi F (1989) J Biotechnol 9:167

    Article  CAS  Google Scholar 

  87. Skobeleva OV, Ktitorova IN, Marichev GA, Lyalin OO (1996) Russ J Plant Physiol 43:511

    Google Scholar 

  88. Tanaka H, Mizuguchi T, Ueda K (1975) J Ferment Technol 53:18

    CAS  Google Scholar 

  89. Hooker BS, Lee JM, An G (1990) Biotechnol Bioeng 35:296

    Article  CAS  Google Scholar 

  90. Vogelmann H, Bischof A, Pape D, Wagner F (1978) In: Alfermann AW, Reinhard E (eds) Production of natural compounds by cell culture methods. GSF, Munich, p 130

    Google Scholar 

  91. McQueen A, Meilhoc E, Bailey JE (1987) Biotechnol Lett 2:831

    Article  Google Scholar 

  92. Jervis L, Robertson ER (1987) In: Webb C, Mavituna F (eds) Plant and animal cells: process possibilities. Ellis Horwood, Chichester, p 216

    Google Scholar 

  93. Zhang YH, Wang HQ, Liu S, Yu JT, Zhong JJ (1997) Biotechnol Lett 19:943

    Article  CAS  Google Scholar 

  94. Lindsey K, Yeoman MM (1983) J Exp Bot 34:1055

    Article  CAS  Google Scholar 

  95. Kinnersly AM, Dougall DK (1980) Planta 149:200

    Article  Google Scholar 

  96. Hulst AC, Meyer MMT, Breteler H, Tramper J (1989) Appl Microbiol Biotechnol 30:18

    Article  CAS  Google Scholar 

  97. Madhusudhan R, Ravishankar GA (1996) Biotechnol Lett 18:1253

    Article  CAS  Google Scholar 

  98. Hanagata N, Ito A, Uehara H, Asari F, Takeuchi T, Karube I (1993) J Biotechnol 30:259

    Article  CAS  Google Scholar 

  99. Kebler M, ten Hoopen HJG, Furusaki S (1999) Enzyme Microb Technol 24:308

    Article  Google Scholar 

  100. Wagner F, Vogelmann H (1977) In: Barz W, Reinhard E, Zenk MH (eds) Plant tissue culture and its biotechnological applications. Springer, Berlin Heidelberg New York, p 85

    Google Scholar 

  101. Kieran PM, Malone DM, MacLoughlin PF (1993) Trans IChemE (C) 71:40

    CAS  Google Scholar 

  102. Zhong JJ, Fujiyama K, Seki T, Yoshida T (1994) Biotechnol Bioeng 44:649

    Article  CAS  Google Scholar 

  103. Leckie F, Scragg AH, Cliffe KC (1991) Enzyme Microb Technol 13:296

    Article  CAS  Google Scholar 

  104. Towill LE, Mazur P (1975) Can J Bot 53:1097

    Article  Google Scholar 

  105. Kebler M, Furusaki S (1997) J Chem Eng Jpn 30:718

    Article  Google Scholar 

  106. Sun X, Linden JC (1999) J Ind Micro Biotechnol 22:44

    Article  CAS  Google Scholar 

  107. Meijer JJ, ten Hoopen HJG, van Gameren YM, Luyben KChAM, Libbenga KR (1994) Enzyme Microb Technol 16:467

    Article  CAS  Google Scholar 

  108. Ho CH, Henderson KA, Rorrer GL (1995) Biotechnol Prog 11:140

    Article  CAS  Google Scholar 

  109. Kebler M, Bye Ø, Furusaki S (1997) Biotechnol Lett 19:545

    Article  Google Scholar 

  110. Yanpaisan W, King NJC, Doran PM (1998) Biotechnol Bioeng 58:515

    Article  CAS  Google Scholar 

  111. Lakhotia S, Bauer KD, Papoutsakis ET (1992) Biotechnol Bioeng 40:978

    Article  CAS  Google Scholar 

  112. Beissinger RL, Laugel RF (1987) AIChE J 33:99

    Article  CAS  Google Scholar 

  113. Augenstein DC, Sinskey AJ, Wang DIC (1971) Biotechnol Bioeng 13:409

    Article  CAS  Google Scholar 

  114. McQueen A, Bailey JE (1989) Biotechnol Lett 8:531

    Article  Google Scholar 

  115. Zhang Z, Al-Rubeai M, Thomas CR (1993) Biotechnol Bioeng 42:987

    Article  Google Scholar 

  116. Aloi LE, Cherry RS (1994) J Biotechnol 33:21

    Article  CAS  Google Scholar 

  117. Charm SE, Wong BL (1970) Biotechnol Bioeng 12:1103

    Article  CAS  Google Scholar 

  118. Thomas CR, Dunhill P (1979) Biotechnol Bioeng 21:2279

    Article  CAS  Google Scholar 

  119. Reese ET, Ryu DT (1980) Enzyme Micob Technol 2:239

    Article  CAS  Google Scholar 

  120. O’Donnell HJ (1993) MEngSc thesis, University College Dublin

    Google Scholar 

  121. Leonard T (1995) MEngSc thesis, University College Dublin

    Google Scholar 

  122. Davies PF, Remuzzi A, Gordon EJ, Dewey CF Jr, Gimbrone MA Jr (1986) Proc Natl Acad Sci 83:2114

    Article  CAS  Google Scholar 

  123. Zhou G, Kresta SM (1998) Chem Eng Sci 53:2099

    Article  CAS  Google Scholar 

  124. Bronnenmeier R, Märkl A (1982) Biotechnol Bioeng 24:553

    Article  CAS  Google Scholar 

  125. Wudtke M, Schügerl K (1987) In: Rheologie und mechanische Beanspruchung biologische system. VDI-GVC, Düsseldorf, p 159

    Google Scholar 

  126. Baldyga J, Bourne JR, Zimmermann B (1994) Chem Eng Sci 49:1937

    Article  CAS  Google Scholar 

  127. Baldyga J, Bourne JR, Gholap RV (1995) Chem Eng Sci 50:1877

    Article  CAS  Google Scholar 

  128. Murtagh J (1994) MEngSc thesis, University College Dublin

    Google Scholar 

  129. Ryan M (1997) MEngSc thesis, University College Dublin

    Google Scholar 

  130. Hiney J (1999) MEngSc thesis, University College Dublin

    Google Scholar 

  131. Panchapakesan NR, Lumley JL (1993) J Fluid Mech 246:197

    Article  CAS  Google Scholar 

  132. Lasher WC, Taulbee DB (1994) Int J Heat Fluid Flow 15:357

    Article  Google Scholar 

  133. Ayazi Shamlou P, Stavrinides S, Titchener-Hooker N, Hoare M (1996) Bioproc Eng 14:237

    Article  Google Scholar 

  134. Van Suijdam JC, Metz B (1981) Biotechnol Bioeng 23:111

    Article  Google Scholar 

  135. Thomas CR, Jüsten P, Paul GC, Nienow AW (1998) Bioproc Eng 18:7

    Google Scholar 

  136. Ayazi Shamlou P, Makagiansar HY, Ison AP, Lilly MD (1994) Chem Eng Sci 49:2621

    Article  Google Scholar 

  137. Whorlow RW (1980) Rheological techniques. Ellis Horwood, Chichester

    Google Scholar 

  138. Born C, Zhang Z, Al-Rubeai M, Thomas CR (1990) Biotechnol Bioeng 40:1004

    Article  Google Scholar 

  139. Thomas CR, Nienow AW, Dunhill P (1979) Biotechnol Bioeng 21:2263

    Article  CAS  Google Scholar 

  140. Edwards N, Beeton S, Bull AT, Merchuk JC (1989) Appl Microbiol Biotechnol 30:190

    Article  Google Scholar 

  141. Soule JC, Wilhelm AM, Riba JP, Ambid C (1987) Entropie 23:24

    CAS  Google Scholar 

  142. Dunlop EH, Namdev PK (1993) In: Nienow AW (ed) Proc 3rd Intl Conf Bioreactor and Bioprocess Fluid Dynamics. MEP, London, p 447

    Google Scholar 

  143. Wilson G (1980) Adv Biochem Eng 16:1

    Google Scholar 

  144. Bailey CM, Nicholson H (1989) Biotechnol Bioeng 34:1331

    Article  CAS  Google Scholar 

  145. Hong YC, Labuza TP, Harlander SK (1989) Biotechnol Prog 5:137

    Article  Google Scholar 

  146. Scragg AH, Morris P, Allan EJ, Bond P, Hegarty P, Smart NJ, Fowler MW (1987) In: Webb C, Mavituna F (eds) Plant and animal cells: process possibilities. Ellis Horwood, Chichester, p 77

    Google Scholar 

  147. Scragg AH (1990) Enzyme Microb Technol 12:82

    Article  Google Scholar 

  148. Leckie F, Scragg AH, Cliffe KC (1991) Enzyme Microb Technol 13:801

    Article  CAS  Google Scholar 

  149. Scragg AH, Bond PA, Fowler MW (1988) Proc 6th European Conf Mixing. Pavia, Italy, p457

    Google Scholar 

  150. Tanaka H, Semba H, Jitsufuchi T, Harada H (1988) Biotechnol Lett 10:485

    Article  Google Scholar 

  151. Ramirez OT, Mutharasan R (1990) Biotechnol Bioeng 36:911

    Article  CAS  Google Scholar 

  152. Kamen AA, Chavarie C, André G, Archambault J (1992) Chem Eng Sci 47:2375

    Article  CAS  Google Scholar 

  153. Fukui H, Tanaka H (1995) Plant Cell Tiss Org Cult 41:17

    Article  Google Scholar 

  154. King AT, Davey MR, Mulligan BJ, Lowe KC (1990) Biotechnol Lett 1:29

    Article  Google Scholar 

  155. Wongsamuth R, Doran PM (1994) Biotechnol Bioeng 44:481

    Article  CAS  Google Scholar 

  156. Singh G, Curtis WR (1994) In: Shargool PD, Ngo TT (eds) Biotechnological applications of plant cultures. CRC, Boca Raton, p 151

    Google Scholar 

  157. Garcia-Briones MA, Brodkey RS, Chalmers JJ (1994) Chem Eng Sci 49:2301

    Article  CAS  Google Scholar 

  158. Ballica R, Ryu DDY (1994) In: Ryu DDY, Furusaki S (eds) Advances in plant science, studies in plant science 4. Elsevier, Amsterdam, p 221

    Google Scholar 

  159. Yang JH, Hu ZD, Wang YP (1995) Chin J Chem Eng 3:101

    CAS  Google Scholar 

  160. Ducos JP, Pareilleux A (1986) Appl Microbiol Biotechnol 25:101

    CAS  Google Scholar 

  161. Kim DI, Pedersen H, Chin C-K (1991) Biotechnol Bioeng 38:331

    Article  CAS  Google Scholar 

  162. Kobayashi Y, Fukui H, Tabata M (1991) Plant Cell Rep 9:496

    Article  CAS  Google Scholar 

  163. Hegarty PK, Smart NJ, Scragg AH, Fowler MW (1986) J Exp Bot 37:1911

    Article  CAS  Google Scholar 

  164. Schlatmann JE, Nuutila AM, van Gulik WM, ten Hoopen HJG, Verpoorte R, Heijnen JJ (1993) Biotechnol Bioeng 41:253

    Article  CAS  Google Scholar 

  165. Smith JM, Davison SW, Payne GF (1990) Biotechnol Bioeng 35:1088

    Article  CAS  Google Scholar 

  166. Doke N (1983) Physiol Plant Pathol 23:345

    Article  CAS  Google Scholar 

  167. Jacks TJ, Davidonis GH (1996) Mol Cell Biochem 158:77

    CAS  Google Scholar 

  168. Levine A, Pennel RI, Alvarez ME, Palmer R, Lamb C (1996) Curr Biol 6:427

    Article  CAS  Google Scholar 

  169. Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nature 394:585

    Article  CAS  Google Scholar 

  170. Apostol I, Heinstein PF, Low PS (1989) Plant Physiol 90:109

    Article  CAS  Google Scholar 

  171. Doke N, Miura Y, Sanchez LM, Park HJ, Noritake T, Yoshioka H, Kawakita K (1996) Gene 179:45

    Article  CAS  Google Scholar 

  172. Mehdy MC, Sharma YK, Sathasivan K, Bays NW (1996) Physiol Plant 98:365

    Article  CAS  Google Scholar 

  173. Lamb C, Dixon RA (1997) Ann Rev Plant Physiol Plant Mol Biol 48:251

    Article  CAS  Google Scholar 

  174. Low PS, Merida JR (1996) Physiol Plant 96:533

    Article  CAS  Google Scholar 

  175. Wojtaszek P (1997) Biochem J 322:681

    CAS  Google Scholar 

  176. Bradley DJ, Kjellbom P, Lamb CJ (1992) Cell 70:21

    Article  CAS  Google Scholar 

  177. Barz W (1997) University of Münster, personal communication

    Google Scholar 

  178. Legendre L, Rueter S, Heinstein PF, Low PS (1993) Plant Physiol 102:233

    CAS  Google Scholar 

  179. Collén J, Pedersén M (1994) Physiol Plant 92:417

    Article  Google Scholar 

  180. Cazalé AC, Rouet-Mayer MA, Barbier-Brygoo H, Mathieu Y, Lauriére C (1998) Plant Physiol 116:659

    Article  Google Scholar 

  181. Schreck S, Dörnenburg H, Knorr D (1996) Food Biotechnol 10:163

    Article  CAS  Google Scholar 

  182. Dörnenburg H, Knorr D (1998) Trend Food Sci Technol 9:355

    Article  Google Scholar 

  183. Yahraus T, Chandra S, Legendre L, Low PS (1995) Plant Physiol 109:1259

    CAS  Google Scholar 

  184. Bolwell GP, Wojtaszek P (1997) Physiol Mol Plant Pathol 51:347

    Article  CAS  Google Scholar 

  185. Mehdy MC (1994) Plant Physiol 105:467

    CAS  Google Scholar 

  186. Bush DS (1993) Plant Physiol 103:7

    CAS  Google Scholar 

  187. Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Nature 352:524

    Article  CAS  Google Scholar 

  188. Grabski S, Arnoys E, Busch B, Schindler M (1998) Plant Physiol 116:279

    Article  CAS  Google Scholar 

  189. Skobeleva OV, Ktitorova IN, Lyalin OO (1996) Russ J Plant Physiol 43:439

    CAS  Google Scholar 

  190. Ando J, Ohtsuka A, Korenaga R, Kamiya A (1991) Biochem Biophys Res Commun 179:1192

    Article  CAS  Google Scholar 

  191. Ando J, Ohtsuka A, Katayama Y, Korenaga R, Ishikawa C, Kamiya A (1994) Biorheology 31:57

    CAS  Google Scholar 

  192. Falke LC, Edwards KL, Pickard BG, Misler S (1988) FEBS 237:141

    Article  CAS  Google Scholar 

  193. Otte O, Barz W (1996) Planta 200:238

    Article  CAS  Google Scholar 

  194. Brownleader MD, McNally PE, Davies GEA, Trevan M, Dey PM (1997) Phytochem 46:1

    Article  CAS  Google Scholar 

  195. Iraki NM, Bressan RA, Hasegawa PM, Carpita NC (1989) Plant Physiol 91:39

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kieran, P.M., Malone, D.M., MacLoughlin, P.F. (2000). Effects of Hydrodynamic and Interfacial Forces on Plant Cell Suspension Systems. In: Schügerl, K., et al. Influence of Stress on Cell Growth and Product Formation. Advances in Biochemical Engineering/Biotechnology, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47865-5_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-47865-5_5

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66687-5

  • Online ISBN: 978-3-540-47865-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics