Effects of Hydrodynamic and Interfacial Forces on Plant Cell Suspension Systems

  • Patricia M. Kieran
  • Dermot M. Malone
  • P. Frank MacLoughlin
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 67)


Plant cells are perceived to be sensitive to the hydrodynamic environment in conventional bioreactors. Heightened sensitivity, relative to most bacterial cultures, is frequently attributed to larger plant cell sizes, extensive vacuolization and aggregation patterns. Early studies of shear sensitivity focused on cell lysis and/or loss of viability. More recently, an extensive ar- ray of sub-lethal responses has been identified. A fuller understanding of these sub-lytic ef- fects may assist in the optimization of large-scale cultivation conditions. This paper reviews recent work on the hydrodynamic shear sensitivity of plant cell systems, under cultivation conditions and in purpose-built shearing devices. The relevance of different approaches to the characterization of the intensity of a given hydrodynamic environment is discussed. Indicators of cell response to hydrodynamic stress are evaluated. The potential significance of cellular defense mechanisms, observed in response to mechanical stimulants, is identified.


Plant cell suspensions Hydrodynamic shear Energy dissipation Aeration Oxidative burst 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Takahashi S, Fujita Y (1991) In: Komamine A, Misawa M, DiCosmo F (eds) Plant cell culture in Japan. CMC, Tokyo, p 72Google Scholar
  2. 2.
    Furuya T, Ushiyama K (1994) In: Shargool PD, Ngo TT (eds) Biotechnological applications of plant cultures. CRC, Boca Raton, p 1Google Scholar
  3. 3.
    Wu J, Zhong JJ (1999) J Biotechnol 68:89CrossRefGoogle Scholar
  4. 4.
    Hara Y (1996) In: DiCosmo F, Misawa M (eds) Plant cell culture secondary metabolism-towards industrial application. CRC, Boca Raton, p 187Google Scholar
  5. 5.
    Sahai O (1994) In: Gabelman A (ed) Bioprocess production of flavor, fragrance and color ingredients. John Wiley, New York, p 239Google Scholar
  6. 6.
    Su WW (1995) Appl Biochem Biotechnol 50:189CrossRefGoogle Scholar
  7. 7.
    Goldstein WE (1999) In: Fu T-J, Singh G, Curtis WR (eds) Plant cell culture for the production of food ingredients. Kluwer Academic, New York, p 195Google Scholar
  8. 8.
    Kieran PM, MacLoughlin PF, Malone DM (1997) J Biotechnol 59:39CrossRefGoogle Scholar
  9. 9.
    Zhong JJ, Yu JT, Yoshida T (1995) World J Microb Biotechnol 11:481CrossRefGoogle Scholar
  10. 10.
    Ritterhaus E, Ulrich J, Westphal K (1990) Int Assoc Plant Tissue Cult Newsletter 61:2Google Scholar
  11. 11.
    Curtis WR (1999) In: Fu TJ, Singh G, Curtis WR (eds) Plant cell culture for the production of food ingredients. Kluwer Academic, New York, p 225Google Scholar
  12. 12.
    Prokop A, Bajpai RK (1992) Adv Appl Microbiol 37:165CrossRefGoogle Scholar
  13. 13.
    Hua J, Erickson LE, Yiin TY, Glasgow LA (1993) Crit Rev Biotechnol 13:305CrossRefGoogle Scholar
  14. 14.
    Thomas CR (1990) In: Winkler MA (ed) Critical reports in applied chemistry: Chemical engineering problems in biotechnology, vol 29. Elsevier Applied Science, London, p 23Google Scholar
  15. 15.
    Joshi JB, Elias CB, Patole MS (1996) Chem Eng J 62:121Google Scholar
  16. 16.
    Merchuk JC (1991) Adv Biochem Eng Biotechnol 44:65Google Scholar
  17. 17.
    Meijer JJ, ten Hoopen HJG, Luyben KChAM, Libbenga KR (1993) Enzyme Microb Technol 15:234CrossRefGoogle Scholar
  18. 18.
    Namdev PK, Dunlop EH (1995) Appl Biochem Biotechnol 54:109CrossRefGoogle Scholar
  19. 19.
    Chalmers JJ (1998) Appl Mech Rev 51:113CrossRefGoogle Scholar
  20. 20.
    Carpita N (1985) Plant Physiol 79:485CrossRefGoogle Scholar
  21. 21.
    Taiz L (1984) Ann Rev Plant Physiol 35:585Google Scholar
  22. 22.
    Matile P (1978) Ann Rev Plant Physiol 29:193CrossRefGoogle Scholar
  23. 23.
    Curtis WR, Emery AH (1993) Biotechnol Bioeng 42:520CrossRefGoogle Scholar
  24. 24.
    Zhong JJ, Seki T, Kinoshita SI, Yoshida T (1992) Biotechnol Bioeng 40:1256CrossRefGoogle Scholar
  25. 25.
    Ballica R, Ryu DDY (1993) Biotechnol Bioeng 42:1181CrossRefGoogle Scholar
  26. 26.
    Jolicoeur M, Chavarie C, Carreau PJ, Archambault J (1992) Biotechnol Bioeng 39:511CrossRefGoogle Scholar
  27. 27.
    Tanaka H (1981) Biotechnol Bioeng 23:1203CrossRefGoogle Scholar
  28. 28.
    Kato A, Kawazoe S, Soh Y (1978) J Ferment Technol 56:224Google Scholar
  29. 29.
    Kieran PM (1993) PhD thesis, University College DublinGoogle Scholar
  30. 30.
    Rodriguéz-Monroy M, Galindo E (1999) Enzyme Microb Technol 10:687CrossRefGoogle Scholar
  31. 31.
    Ballica R, Ryu DDY, Powell RL, Owen D (1992) Biotechnol Prog 8:413CrossRefGoogle Scholar
  32. 32.
    Doran P (1993) Adv Biochem Eng Biotechnol 48:115Google Scholar
  33. 33.
    Tanaka H, Nishijima F, Suwa M, Iwanoto T (1983) Biotechnol Bioeng 25:2359CrossRefGoogle Scholar
  34. 34.
    Shibasaki N, Hirose K, Yonemoto T, Takadi T (1992) J Chem Technol Biotechnol 53:359Google Scholar
  35. 35.
    Dubuis B, Plüss R, Romette JL, Kut OM, Prenosil JE, Bourne JR (1993) In: Nienow AW (ed) Bioreactor and bioprocess fluid dynamics, BHR Group Conference Series, vol 5. MEP, London, p 89Google Scholar
  36. 36.
    Fulzele DP, Heble MR (1994) J Biotechnol 35:1CrossRefGoogle Scholar
  37. 37.
    Matsushita T, Koga N, Ogawa K, Fujino K, Funatsu K (1994) In: Ryu DDY, Furusaki S (eds) Studies in plant science 4: Advances in plant biotechnology. Elsevier, Amsterdam, p 339Google Scholar
  38. 38.
    Baldyga J, Pohorecki R (1998) Appl Mech Rev 51:121CrossRefGoogle Scholar
  39. 39.
    Nienow AW (1998) Appl Mech Rev 51:3CrossRefGoogle Scholar
  40. 40.
    Kresta SM (1998) Can J Chem Eng 76:563CrossRefGoogle Scholar
  41. 41.
    Caulet PJC, van der Lans RGJM, Luyben KChAM (1996) Chem Eng J 62:193Google Scholar
  42. 42.
    Wei T, Willmarth WW (1992) J Fluid Mech 245:619CrossRefGoogle Scholar
  43. 43.
    Zhou G, Kresta SM (1998) Chem Eng Sci 53:2063CrossRefGoogle Scholar
  44. 44.
    Davies JT (1972) Turbulence phenomena. Academic Press, New YorkGoogle Scholar
  45. 45.
    Huang SY, Chen KW, Chen SY (1998) J Chin Inst Chem Engrs 29:171Google Scholar
  46. 46.
    Sumino Y, Akiyama S, Fukuda H (1972) J Ferment Technol 50:203Google Scholar
  47. 47.
    Sumino Y (1992) In: Furusaki S, Enolo I, Matsumo R (eds) Biochemical engineering for 2001. Springer-Verlag, Tokyo, p 207Google Scholar
  48. 48.
    Fujita M, Iwahori K, Tatsuta S, Yamakawa K (1994) J Ferment Bioeng 78:368CrossRefGoogle Scholar
  49. 49.
    Sinskey AJ, Fleischaker RJ, Tyo MA, Girard DJ, Wang DIC (1981) Ann NY Acad Sci 369:47CrossRefGoogle Scholar
  50. 50.
    Kato A, Shimizu Y, Nagai S (1975) J Ferment Bioeng 53:744Google Scholar
  51. 51.
    Leckie F, Scragg AH, Cliffe KC (1991) Biotechnol Bioeng 37:364CrossRefGoogle Scholar
  52. 52.
    Lima Costa ME, Rapaso S, Clemente A, Pais MSS, Cabral JMS (1997) In: Nienow AW (ed) Proc 4th Intl Conf Bioreactor and Bioprocess Fluid Dynamics, MEP, London, p 27Google Scholar
  53. 53.
    Kebler M, ten Hoopen HJG, Heijnen JJ, Furusaki S (1997) Biotechnol Tech 11:507CrossRefGoogle Scholar
  54. 54.
    Kieran PM, O’Donnell HJ, Malone DM, MacLoughlin PF (1995) Biotechnol Bioeng 45:415CrossRefGoogle Scholar
  55. 55.
    Takeda T, Seki M, Furusaki S (1994) J Chem Eng Jpn 27:466CrossRefGoogle Scholar
  56. 56.
    Takeda T, Kitagawa T, Takeuchi Y, Seki M, Furusaki S (1998) Can J Chem Eng 76:267CrossRefGoogle Scholar
  57. 57.
    Dunlop EH, Namdev PK, Rosenberg MZ (1994) Chem Eng Sci 49:2263CrossRefGoogle Scholar
  58. 58.
    Wongsamuth R, Doran PM (1997) J Chem Tech Biotechnol 69:15CrossRefGoogle Scholar
  59. 59.
    MacLoughlin PF, Malone DM, Murtagh JT, Kieran PM (1998) Biotechnol Bioeng 58:595CrossRefGoogle Scholar
  60. 60.
    Cherry RS, Papoutsakis ET (1986) BioprocEng 1:29CrossRefGoogle Scholar
  61. 61.
    Croughan MS, Hamel JF, Wang DIC (1988) Biotechnol Prog 5:137Google Scholar
  62. 62.
    Metzner AB, Otto RE (1957) AIChE J 3:3CrossRefGoogle Scholar
  63. 63.
    Calderbank PH, Moo-Young MB (1959) Trans IChemE 37:26Google Scholar
  64. 64.
    Calderbank PH, Moo-Young MB (1961) Trans IChemE 39:337Google Scholar
  65. 65.
    Bowen RL (1986) Chem Eng 93:55Google Scholar
  66. 66.
    van’t Riet K, Smith JM (1975) Chem Eng Sci 30:1093CrossRefGoogle Scholar
  67. 67.
    Wichterle K, Kadlec M, Zak L, Mitschika P (1984) Chem Eng Commun 26:25CrossRefGoogle Scholar
  68. 68.
    Robertson B, Ulbrecht JJ (1987) In: Ho CS, Oldshue JY (eds) Biotechnology processes: Scale-up and mixing. AIChE, New York, p 31Google Scholar
  69. 69.
    Rosenberg MZ (1987) PhD thesis, Washington University, St LouisGoogle Scholar
  70. 70.
    Matsuo H, Unno H (1981) ASCE J Environ Eng Div 107:527Google Scholar
  71. 71.
    Schlichting H (1973) Boundary layer theory, 7th edn. McGraw Hill, New YorkGoogle Scholar
  72. 72.
    Meijer JJ (1989) PhD thesis, Delft University of TechnologyGoogle Scholar
  73. 73.
    DiCosmo F, Misawa M (1985) Trends Biotechnol 3:318CrossRefGoogle Scholar
  74. 74.
    Eilert U (1987) In: Constabel F, Vasil I (eds) Cell culture and somatic cell genetics of plants, vol 4. Academic Press, San Diego, p 153Google Scholar
  75. 75.
    Scragg AH, Allan EJ, Leckie F (1988) Enzyme Microb Technol 10:361CrossRefGoogle Scholar
  76. 76.
    Horsch RB, Jones GE (1980) In Vitro 80:103Google Scholar
  77. 77.
    Hooker BS, Lee JM, An G (1989) Enzyme Microb Technol 11:484CrossRefGoogle Scholar
  78. 78.
    Curtin FT (1991) PhD thesis, University College DublinGoogle Scholar
  79. 79.
    Gaff DF, Okong’o-ogola O (1971) J Exp Bot 22:756CrossRefGoogle Scholar
  80. 80.
    Widholm JM (1972) Stain Technol 47:189Google Scholar
  81. 81.
    Swain D, De DN (1994) Indian J Exp Bot 32:501Google Scholar
  82. 82.
    Tucker KG, Chalder S, Al-Rubeai M, Thomas CR (1994) Enzyme Microb Technol 16:29CrossRefGoogle Scholar
  83. 83.
    Smith MAL, Reid JF (1996) In: DiCosmo F, Misawa M (eds) Plant cell culture secondary metabolism-towards industrial application. CRC, Boca Raton, chap 3, p 53Google Scholar
  84. 84.
    Markx GH, ten Hoopen HJG, Meijer JJ, Vinke KL (1991) J Biotechnol 19:145CrossRefGoogle Scholar
  85. 85.
    Parr AJ, Smith JI, Robins RJ, Rhodes MJC (1984) Plant Cell Rep 3:161CrossRefGoogle Scholar
  86. 86.
    Abu-Reesh I, Kargi F (1989) J Biotechnol 9:167CrossRefGoogle Scholar
  87. 87.
    Skobeleva OV, Ktitorova IN, Marichev GA, Lyalin OO (1996) Russ J Plant Physiol 43:511Google Scholar
  88. 88.
    Tanaka H, Mizuguchi T, Ueda K (1975) J Ferment Technol 53:18Google Scholar
  89. 89.
    Hooker BS, Lee JM, An G (1990) Biotechnol Bioeng 35:296CrossRefGoogle Scholar
  90. 90.
    Vogelmann H, Bischof A, Pape D, Wagner F (1978) In: Alfermann AW, Reinhard E (eds) Production of natural compounds by cell culture methods. GSF, Munich, p 130Google Scholar
  91. 91.
    McQueen A, Meilhoc E, Bailey JE (1987) Biotechnol Lett 2:831CrossRefGoogle Scholar
  92. 92.
    Jervis L, Robertson ER (1987) In: Webb C, Mavituna F (eds) Plant and animal cells: process possibilities. Ellis Horwood, Chichester, p 216Google Scholar
  93. 93.
    Zhang YH, Wang HQ, Liu S, Yu JT, Zhong JJ (1997) Biotechnol Lett 19:943CrossRefGoogle Scholar
  94. 94.
    Lindsey K, Yeoman MM (1983) J Exp Bot 34:1055CrossRefGoogle Scholar
  95. 95.
    Kinnersly AM, Dougall DK (1980) Planta 149:200CrossRefGoogle Scholar
  96. 96.
    Hulst AC, Meyer MMT, Breteler H, Tramper J (1989) Appl Microbiol Biotechnol 30:18CrossRefGoogle Scholar
  97. 97.
    Madhusudhan R, Ravishankar GA (1996) Biotechnol Lett 18:1253CrossRefGoogle Scholar
  98. 98.
    Hanagata N, Ito A, Uehara H, Asari F, Takeuchi T, Karube I (1993) J Biotechnol 30:259CrossRefGoogle Scholar
  99. 99.
    Kebler M, ten Hoopen HJG, Furusaki S (1999) Enzyme Microb Technol 24:308CrossRefGoogle Scholar
  100. 100.
    Wagner F, Vogelmann H (1977) In: Barz W, Reinhard E, Zenk MH (eds) Plant tissue culture and its biotechnological applications. Springer, Berlin Heidelberg New York, p 85Google Scholar
  101. 101.
    Kieran PM, Malone DM, MacLoughlin PF (1993) Trans IChemE (C) 71:40Google Scholar
  102. 102.
    Zhong JJ, Fujiyama K, Seki T, Yoshida T (1994) Biotechnol Bioeng 44:649CrossRefGoogle Scholar
  103. 103.
    Leckie F, Scragg AH, Cliffe KC (1991) Enzyme Microb Technol 13:296CrossRefGoogle Scholar
  104. 104.
    Towill LE, Mazur P (1975) Can J Bot 53:1097CrossRefGoogle Scholar
  105. 105.
    Kebler M, Furusaki S (1997) J Chem Eng Jpn 30:718CrossRefGoogle Scholar
  106. 106.
    Sun X, Linden JC (1999) J Ind Micro Biotechnol 22:44CrossRefGoogle Scholar
  107. 107.
    Meijer JJ, ten Hoopen HJG, van Gameren YM, Luyben KChAM, Libbenga KR (1994) Enzyme Microb Technol 16:467CrossRefGoogle Scholar
  108. 108.
    Ho CH, Henderson KA, Rorrer GL (1995) Biotechnol Prog 11:140CrossRefGoogle Scholar
  109. 109.
    Kebler M, Bye Ø, Furusaki S (1997) Biotechnol Lett 19:545CrossRefGoogle Scholar
  110. 110.
    Yanpaisan W, King NJC, Doran PM (1998) Biotechnol Bioeng 58:515CrossRefGoogle Scholar
  111. 111.
    Lakhotia S, Bauer KD, Papoutsakis ET (1992) Biotechnol Bioeng 40:978CrossRefGoogle Scholar
  112. 112.
    Beissinger RL, Laugel RF (1987) AIChE J 33:99CrossRefGoogle Scholar
  113. 113.
    Augenstein DC, Sinskey AJ, Wang DIC (1971) Biotechnol Bioeng 13:409CrossRefGoogle Scholar
  114. 114.
    McQueen A, Bailey JE (1989) Biotechnol Lett 8:531CrossRefGoogle Scholar
  115. 115.
    Zhang Z, Al-Rubeai M, Thomas CR (1993) Biotechnol Bioeng 42:987CrossRefGoogle Scholar
  116. 116.
    Aloi LE, Cherry RS (1994) J Biotechnol 33:21CrossRefGoogle Scholar
  117. 117.
    Charm SE, Wong BL (1970) Biotechnol Bioeng 12:1103CrossRefGoogle Scholar
  118. 118.
    Thomas CR, Dunhill P (1979) Biotechnol Bioeng 21:2279CrossRefGoogle Scholar
  119. 119.
    Reese ET, Ryu DT (1980) Enzyme Micob Technol 2:239CrossRefGoogle Scholar
  120. 120.
    O’Donnell HJ (1993) MEngSc thesis, University College DublinGoogle Scholar
  121. 121.
    Leonard T (1995) MEngSc thesis, University College DublinGoogle Scholar
  122. 122.
    Davies PF, Remuzzi A, Gordon EJ, Dewey CF Jr, Gimbrone MA Jr (1986) Proc Natl Acad Sci 83:2114CrossRefGoogle Scholar
  123. 123.
    Zhou G, Kresta SM (1998) Chem Eng Sci 53:2099CrossRefGoogle Scholar
  124. 124.
    Bronnenmeier R, Märkl A (1982) Biotechnol Bioeng 24:553CrossRefGoogle Scholar
  125. 125.
    Wudtke M, Schügerl K (1987) In: Rheologie und mechanische Beanspruchung biologische system. VDI-GVC, Düsseldorf, p 159Google Scholar
  126. 126.
    Baldyga J, Bourne JR, Zimmermann B (1994) Chem Eng Sci 49:1937CrossRefGoogle Scholar
  127. 127.
    Baldyga J, Bourne JR, Gholap RV (1995) Chem Eng Sci 50:1877CrossRefGoogle Scholar
  128. 128.
    Murtagh J (1994) MEngSc thesis, University College DublinGoogle Scholar
  129. 129.
    Ryan M (1997) MEngSc thesis, University College DublinGoogle Scholar
  130. 130.
    Hiney J (1999) MEngSc thesis, University College DublinGoogle Scholar
  131. 131.
    Panchapakesan NR, Lumley JL (1993) J Fluid Mech 246:197CrossRefGoogle Scholar
  132. 132.
    Lasher WC, Taulbee DB (1994) Int J Heat Fluid Flow 15:357CrossRefGoogle Scholar
  133. 133.
    Ayazi Shamlou P, Stavrinides S, Titchener-Hooker N, Hoare M (1996) Bioproc Eng 14:237CrossRefGoogle Scholar
  134. 134.
    Van Suijdam JC, Metz B (1981) Biotechnol Bioeng 23:111CrossRefGoogle Scholar
  135. 135.
    Thomas CR, Jüsten P, Paul GC, Nienow AW (1998) Bioproc Eng 18:7Google Scholar
  136. 136.
    Ayazi Shamlou P, Makagiansar HY, Ison AP, Lilly MD (1994) Chem Eng Sci 49:2621CrossRefGoogle Scholar
  137. 137.
    Whorlow RW (1980) Rheological techniques. Ellis Horwood, ChichesterGoogle Scholar
  138. 138.
    Born C, Zhang Z, Al-Rubeai M, Thomas CR (1990) Biotechnol Bioeng 40:1004CrossRefGoogle Scholar
  139. 139.
    Thomas CR, Nienow AW, Dunhill P (1979) Biotechnol Bioeng 21:2263CrossRefGoogle Scholar
  140. 140.
    Edwards N, Beeton S, Bull AT, Merchuk JC (1989) Appl Microbiol Biotechnol 30:190CrossRefGoogle Scholar
  141. 141.
    Soule JC, Wilhelm AM, Riba JP, Ambid C (1987) Entropie 23:24Google Scholar
  142. 142.
    Dunlop EH, Namdev PK (1993) In: Nienow AW (ed) Proc 3rd Intl Conf Bioreactor and Bioprocess Fluid Dynamics. MEP, London, p 447Google Scholar
  143. 143.
    Wilson G (1980) Adv Biochem Eng 16:1Google Scholar
  144. 144.
    Bailey CM, Nicholson H (1989) Biotechnol Bioeng 34:1331CrossRefGoogle Scholar
  145. 145.
    Hong YC, Labuza TP, Harlander SK (1989) Biotechnol Prog 5:137CrossRefGoogle Scholar
  146. 146.
    Scragg AH, Morris P, Allan EJ, Bond P, Hegarty P, Smart NJ, Fowler MW (1987) In: Webb C, Mavituna F (eds) Plant and animal cells: process possibilities. Ellis Horwood, Chichester, p 77Google Scholar
  147. 147.
    Scragg AH (1990) Enzyme Microb Technol 12:82CrossRefGoogle Scholar
  148. 148.
    Leckie F, Scragg AH, Cliffe KC (1991) Enzyme Microb Technol 13:801CrossRefGoogle Scholar
  149. 149.
    Scragg AH, Bond PA, Fowler MW (1988) Proc 6th European Conf Mixing. Pavia, Italy, p457Google Scholar
  150. 150.
    Tanaka H, Semba H, Jitsufuchi T, Harada H (1988) Biotechnol Lett 10:485CrossRefGoogle Scholar
  151. 151.
    Ramirez OT, Mutharasan R (1990) Biotechnol Bioeng 36:911CrossRefGoogle Scholar
  152. 152.
    Kamen AA, Chavarie C, André G, Archambault J (1992) Chem Eng Sci 47:2375CrossRefGoogle Scholar
  153. 153.
    Fukui H, Tanaka H (1995) Plant Cell Tiss Org Cult 41:17CrossRefGoogle Scholar
  154. 154.
    King AT, Davey MR, Mulligan BJ, Lowe KC (1990) Biotechnol Lett 1:29CrossRefGoogle Scholar
  155. 155.
    Wongsamuth R, Doran PM (1994) Biotechnol Bioeng 44:481CrossRefGoogle Scholar
  156. 156.
    Singh G, Curtis WR (1994) In: Shargool PD, Ngo TT (eds) Biotechnological applications of plant cultures. CRC, Boca Raton, p 151Google Scholar
  157. 157.
    Garcia-Briones MA, Brodkey RS, Chalmers JJ (1994) Chem Eng Sci 49:2301CrossRefGoogle Scholar
  158. 158.
    Ballica R, Ryu DDY (1994) In: Ryu DDY, Furusaki S (eds) Advances in plant science, studies in plant science 4. Elsevier, Amsterdam, p 221Google Scholar
  159. 159.
    Yang JH, Hu ZD, Wang YP (1995) Chin J Chem Eng 3:101Google Scholar
  160. 160.
    Ducos JP, Pareilleux A (1986) Appl Microbiol Biotechnol 25:101Google Scholar
  161. 161.
    Kim DI, Pedersen H, Chin C-K (1991) Biotechnol Bioeng 38:331CrossRefGoogle Scholar
  162. 162.
    Kobayashi Y, Fukui H, Tabata M (1991) Plant Cell Rep 9:496CrossRefGoogle Scholar
  163. 163.
    Hegarty PK, Smart NJ, Scragg AH, Fowler MW (1986) J Exp Bot 37:1911CrossRefGoogle Scholar
  164. 164.
    Schlatmann JE, Nuutila AM, van Gulik WM, ten Hoopen HJG, Verpoorte R, Heijnen JJ (1993) Biotechnol Bioeng 41:253CrossRefGoogle Scholar
  165. 165.
    Smith JM, Davison SW, Payne GF (1990) Biotechnol Bioeng 35:1088CrossRefGoogle Scholar
  166. 166.
    Doke N (1983) Physiol Plant Pathol 23:345CrossRefGoogle Scholar
  167. 167.
    Jacks TJ, Davidonis GH (1996) Mol Cell Biochem 158:77Google Scholar
  168. 168.
    Levine A, Pennel RI, Alvarez ME, Palmer R, Lamb C (1996) Curr Biol 6:427CrossRefGoogle Scholar
  169. 169.
    Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nature 394:585CrossRefGoogle Scholar
  170. 170.
    Apostol I, Heinstein PF, Low PS (1989) Plant Physiol 90:109CrossRefGoogle Scholar
  171. 171.
    Doke N, Miura Y, Sanchez LM, Park HJ, Noritake T, Yoshioka H, Kawakita K (1996) Gene 179:45CrossRefGoogle Scholar
  172. 172.
    Mehdy MC, Sharma YK, Sathasivan K, Bays NW (1996) Physiol Plant 98:365CrossRefGoogle Scholar
  173. 173.
    Lamb C, Dixon RA (1997) Ann Rev Plant Physiol Plant Mol Biol 48:251CrossRefGoogle Scholar
  174. 174.
    Low PS, Merida JR (1996) Physiol Plant 96:533CrossRefGoogle Scholar
  175. 175.
    Wojtaszek P (1997) Biochem J 322:681Google Scholar
  176. 176.
    Bradley DJ, Kjellbom P, Lamb CJ (1992) Cell 70:21CrossRefGoogle Scholar
  177. 177.
    Barz W (1997) University of Münster, personal communicationGoogle Scholar
  178. 178.
    Legendre L, Rueter S, Heinstein PF, Low PS (1993) Plant Physiol 102:233Google Scholar
  179. 179.
    Collén J, Pedersén M (1994) Physiol Plant 92:417CrossRefGoogle Scholar
  180. 180.
    Cazalé AC, Rouet-Mayer MA, Barbier-Brygoo H, Mathieu Y, Lauriére C (1998) Plant Physiol 116:659CrossRefGoogle Scholar
  181. 181.
    Schreck S, Dörnenburg H, Knorr D (1996) Food Biotechnol 10:163CrossRefGoogle Scholar
  182. 182.
    Dörnenburg H, Knorr D (1998) Trend Food Sci Technol 9:355CrossRefGoogle Scholar
  183. 183.
    Yahraus T, Chandra S, Legendre L, Low PS (1995) Plant Physiol 109:1259Google Scholar
  184. 184.
    Bolwell GP, Wojtaszek P (1997) Physiol Mol Plant Pathol 51:347CrossRefGoogle Scholar
  185. 185.
    Mehdy MC (1994) Plant Physiol 105:467Google Scholar
  186. 186.
    Bush DS (1993) Plant Physiol 103:7Google Scholar
  187. 187.
    Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Nature 352:524CrossRefGoogle Scholar
  188. 188.
    Grabski S, Arnoys E, Busch B, Schindler M (1998) Plant Physiol 116:279CrossRefGoogle Scholar
  189. 189.
    Skobeleva OV, Ktitorova IN, Lyalin OO (1996) Russ J Plant Physiol 43:439Google Scholar
  190. 190.
    Ando J, Ohtsuka A, Korenaga R, Kamiya A (1991) Biochem Biophys Res Commun 179:1192CrossRefGoogle Scholar
  191. 191.
    Ando J, Ohtsuka A, Katayama Y, Korenaga R, Ishikawa C, Kamiya A (1994) Biorheology 31:57Google Scholar
  192. 192.
    Falke LC, Edwards KL, Pickard BG, Misler S (1988) FEBS 237:141CrossRefGoogle Scholar
  193. 193.
    Otte O, Barz W (1996) Planta 200:238CrossRefGoogle Scholar
  194. 194.
    Brownleader MD, McNally PE, Davies GEA, Trevan M, Dey PM (1997) Phytochem 46:1CrossRefGoogle Scholar
  195. 195.
    Iraki NM, Bressan RA, Hasegawa PM, Carpita NC (1989) Plant Physiol 91:39CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Patricia M. Kieran
    • 1
  • Dermot M. Malone
    • 1
  • P. Frank MacLoughlin
    • 1
  1. 1.Department of Chemical EngineeringUniversity College DublinBelfield, Dublin 4Ireland

Personalised recommendations