Influence of Stress on Adherent Cells

  • Gerlinde Kretzmer
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 67)


Stress is a broad term often used with animal cells. Frequently mechanical forces are meant using this term but chemical stress is also important cultivating animal cells. The chemical environment of the cell in a reactor have to be considered very carefully. The complexity of the medium requirements and the metabolic pathway cause very often growth limitations. Studying these limitations in order to find the reasons showed to be difficulty because of the complexity of the system. Nevertheless, glucose, glutamine, lactate and ammonia are found to be critical parameter as well as the osmotic pressure.


Adherent cells Chemical stress Shear stress Growth inhibition Stress protection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Griffiths B (1992) Scaling-up of animal cell cultures. In: Freshney RI (ed) Animal cell culture A practical approach. Oxford University Press, Oxford, p 47Google Scholar
  2. 2.
    Van Wezel AL (1967) Nature 216:64CrossRefGoogle Scholar
  3. 3.
    Handa-Corrigan A, Emery AN, Spier RE (1989) Enzym Microb Technol 11:230CrossRefGoogle Scholar
  4. 4.
    Papoutsakis ET (1991) TIBTECH 9:427Google Scholar
  5. 5.
    Feder J, Tolbert WR (1983) Scientific American 248:36CrossRefGoogle Scholar
  6. 6.
    Lehmann J, Piehl GW, Schulz R (1987) Dev Biol Standard 66:227Google Scholar
  7. 7.
    Jäger V (1988) Dissertation Universität HannoverGoogle Scholar
  8. 8.
    Märkl H, Lechner M, Götz F (1990) J Ferment Bioeng 69:244CrossRefGoogle Scholar
  9. 9.
    Levesque MJ, Nerem RM (1985) J of Biomechan Eng 107:341CrossRefGoogle Scholar
  10. 10.
    Papadaki M, McIntire LV, Eskin SG (1996) Biotechnol Bioeng 50:555CrossRefGoogle Scholar
  11. 11.
    Eagle H (1955) Science 122:501CrossRefGoogle Scholar
  12. 12.
    Lambert KJ, Birch JR (1985) In: Spier RE, Griffiths JB (eds) Animal Cell Biotechnology. Academic Press, London 1:86Google Scholar
  13. 13.
    Zielke HR, Ozand PT, Tildon JT, Sevdalian DA, Cornblath M (1978) J Cell Physiol 95:41CrossRefGoogle Scholar
  14. 14.
    Glacken MW, Fleischaker RJ, Sinskey AJ (1988) Biotechnol Bioeng 28:1376CrossRefGoogle Scholar
  15. 15.
    Zielke HR, Sumbilla CM, Sevdalian DA, Hawkins RL, Ozand PT (1980) J Cell Physiol 104:433CrossRefGoogle Scholar
  16. 16.
    Hassell T (1988) PhD thesis, Manchester Polytechnic, UKGoogle Scholar
  17. 17.
    Wentz D (1989) PhD thesis, University of Hannover, GermanyGoogle Scholar
  18. 18.
    Wentz D, Schügerl K (1992) Enzyme Microbiol Technol 14:68CrossRefGoogle Scholar
  19. 19.
    Reuveny S, Velez D, Macmillan JD, Miller L (1986) J Immunol Methods 86:53CrossRefGoogle Scholar
  20. 20.
    Butler M, Spier RE (1984) J Biotechnol 1:187CrossRefGoogle Scholar
  21. 21.
    Butler M (1985) Dev Biol Stand 60:269Google Scholar
  22. 22.
    McQueen A, Bailey JE (1990) Biotechnol Bioeng 35:1067CrossRefGoogle Scholar
  23. 23.
    Doyle C, Butler M (1990) J Biotechnol 15:91CrossRefGoogle Scholar
  24. 24.
    Miller WM, Blanch HW, Wilke CR (1988) Biotechnol Bioeng 32:947CrossRefGoogle Scholar
  25. 25.
    Glacken MW, Adema E, Sinskey AJ (1988) Biotechnol Bioeng 32:491CrossRefGoogle Scholar
  26. 26.
    Ryll T, Valley U, Wagner R (1994) Biotechnol Bioeng 44:184CrossRefGoogle Scholar
  27. 27.
    Papoutsakis ET, Linzer DIH, Borys MC (1994) In: Animal Cell Technology: Products of Today, Prospects for Tomorrow, Butterworth-Heinemann, Oxford, 658Google Scholar
  28. 28.
    Omasa T, Higashiyama K, Shioya S, Suga K (1992) Biotechnol Bioeng 39:556CrossRefGoogle Scholar
  29. 29.
    Oh SKW, Vig P, Chua F, Teo WK, Yap MGS (1993) Biotechnol Bioeng 42:601CrossRefGoogle Scholar
  30. 30.
    Tramper J, Williams JB, Joustra D, Vlak JM (1986) Enzyme Microbiol Technol 8:33CrossRefGoogle Scholar
  31. 31.
    Oh SKW, Nienow AW, Al-Rubeai M, Emery AN (1989) J of Biotechnol 12:45CrossRefGoogle Scholar
  32. 32.
    Aunins JG, Woodson BA, Hale TK, Wang DIC (1989) Biotechnol Bioeng 34:1127CrossRefGoogle Scholar
  33. 33.
    Cherry RS, Papoutsakis ET (1986) Bioproc Eng 1:29CrossRefGoogle Scholar
  34. 34.
    Cherry RS, Papoutsakis ET (1988) Biotechnol Bioeng 32:1001CrossRefGoogle Scholar
  35. 35.
    Cherry RS, Papoutsakis ET (1989) Bioproc Eng 4:81CrossRefGoogle Scholar
  36. 36.
    Croughan MS, Hamel JF, Wang DIC (1987) Biotechnol Bioeng 29:130CrossRefGoogle Scholar
  37. 37.
    Croughan MS, Hamel JF, Wang DIC (1988) Biotechnol Bioeng 32:975CrossRefGoogle Scholar
  38. 38.
    Croughan MS, Sayre ES, Wang DIC (1989) Biotechnol Bioeng 33:862CrossRefGoogle Scholar
  39. 39.
    Hu WS, Meier J, Wang DIC (1985) Biotechnol Bioeng 27:585CrossRefGoogle Scholar
  40. 40.
    Croughan MS, Wang DIC (1989) Biotechnol Bioeng 33:731CrossRefGoogle Scholar
  41. 41.
    Cherry RS (1993) Biotech Adv 11:279CrossRefGoogle Scholar
  42. 42.
    Bhat VD, Windridge PA, Cherry RS, Mandel LJ (1995) Biotechnol Prog 11:596CrossRefGoogle Scholar
  43. 43.
    Krüger JW, Young DF, Cholvin NR (1971) J of Biomech 4:31CrossRefGoogle Scholar
  44. 44.
    Stathopoulos NA, Hellums JD (1985) Biotechnol Bioeng 27:1021CrossRefGoogle Scholar
  45. 45.
    Sprague EA, Steinbach BL, Nerem RM, Schwartz C (1987) Circulation 76:648Google Scholar
  46. 46.
    Yoshikawa N, Ariyoshi H, Ikeda M, Sakon M, Kawasaki T, Monden M (1997) Cell Calcium 22:189CrossRefGoogle Scholar
  47. 47.
    Kretzmer G, Schügerl K (1991) Appl Microbiol Biotechnol 34:613CrossRefGoogle Scholar
  48. 48.
    Ludwig A, Kretzmer G, Schügerl K (1992) Enzyme Microbiol Technol 14:209CrossRefGoogle Scholar
  49. 49.
    Ludwig A, Tomeczkowski J, Kretzmer G (1992) Biotechnol Lett 14:881CrossRefGoogle Scholar
  50. 50.
    Ludwig A, Tomeczkowski J, Kretzmer G (1992) Appl Microbio Biotechnol 38:323CrossRefGoogle Scholar
  51. 51.
    Tomeczkowski J, Ludwig A, Kretzmer G (1993) Enzyme Microb Technol 15:849CrossRefGoogle Scholar
  52. 52.
    Ludwig A, Kretzmer G (1993) J of Biotechnol 27:217CrossRefGoogle Scholar
  53. 53.
    Thoumine O, Ziegler T, Girard PR, Nerem RM (1995) Exp Cell Research 219:427CrossRefGoogle Scholar
  54. 54.
    Sato M, Ohshima N (1994) Biorheology 31:143Google Scholar
  55. 55.
    Frangos JA, Eskin S, McIntire LV, Ives CL (1985) Nature 227:1477Google Scholar
  56. 56.
    Frangos JA, Eskin S, McIntire LV (1988) Biotechnol Bioeng 32:1053CrossRefGoogle Scholar
  57. 57.
    Nollert MU, Diamond SL, McIntire LV (1991) Biotechnol Bioeng 38:588CrossRefGoogle Scholar
  58. 58.
    Spier RE, Crouch CE, Fowler H (1985) Dev Biol Standard 66:255Google Scholar
  59. 59.
    Ludwig A (1993) PhD thesis, University of Hannover, GermanyGoogle Scholar
  60. 60.
    Michaels JD, Petersen JF, McIntire LV, Papoutsakis ET (1991) Biotechnol Bioeng 38:169CrossRefGoogle Scholar
  61. 61.
    Al-Rubeai M, Emery AN, Chalder S (1992) Appl Microbiol Biotechnol 37:44CrossRefGoogle Scholar
  62. 62.
    Smith CG, Greenfield PF (1992) Biotechnol Bioeng 40:1045CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Gerlinde Kretzmer
    • 1
  1. 1.Institut für Technische Chemie der Universität HannoverHannoverGermany

Personalised recommendations