Advertisement

The Engineering Effects of Fluids Flow on Freely Suspended Biological Macro-Materials and Macromolecules

  • S. S. Yim
  • P. A. Shamlou
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 67)

Abstract

The manufacture of many biotechnologically important products requires consideration of the physical breakage and biochemical degradation pathways at all stages during processing, storage and transportation. The engineering flow environment in most items of bioprocess equipment has long been recognised as a key factor in determining these pathways and is the focus of the present review. Because of its industrial significance, the detrimental effects of the engineering flow environment on freely suspended bioparticles have been the subject of many scientific investigations over the past few decades. There is a general consensus of opi- nion that fluid shear and elongational stresses are the two main breakage pathways of rele- vance to processing of most biomaterials. An additional degradation pathway has also been identified involving significant losses of biological activity of macromolecules at gas-liquid, gas-solid and liquid-liquid interfaces. In such cases, the engineering flow field is shown to have a secondary role in determining the kinetics of inactivation. An equally important con- sideration in the optimisation of the relevant unit operations is the biomechanical integrity of the flow sensitive material. The biomechanical and biorheological parameters that deter- mine the integrity of biomaterials are poorly defined, their evaluations present future re- search challenges and are of immediate engineering significance.

Keywords

Shear effects Biological macromaterials Process equipment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abu-Reesh I, Kargi F (1989) J Biotech 9:167CrossRefGoogle Scholar
  2. 2.
    Al-Rubeai M, Singh RP, Goldman MH, Emery AN (1995) Biotech Bioeng 45:463CrossRefGoogle Scholar
  3. 3.
    Bhat VD, Windridge PA, Cherry RS, Mandel LJ (1995) Biotechnol Prog 11:596CrossRefGoogle Scholar
  4. 4.
    Cherry RS (1993) Biotech Adv 2:279CrossRefGoogle Scholar
  5. 5.
    Croughan MS, Hamel JF, Wang DIC (1987) Biotechnol Bioeng 29:130CrossRefGoogle Scholar
  6. 6.
    Croughan MS, Sayre ES, Wang DIC (1989) Biotechnol Bioeng 33:862CrossRefGoogle Scholar
  7. 7.
    Croughan MS, Wang DIC (1989) Biotechnol Bioeng 33:731CrossRefGoogle Scholar
  8. 8.
    Dunlop EH, Namdev PK, Rosenberg MZ (1994) Chem Eng Sci 49:2263CrossRefGoogle Scholar
  9. 9.
    Frangos JA, McIntire LV, Eskin SG (1988) Biotechnol Bioeng 32:1053CrossRefGoogle Scholar
  10. 10.
    Garcia-Briones MA, Chalmers JJ (1994) Biotech Bioeng 44:1089CrossRefGoogle Scholar
  11. 11.
    Goldblum S, Bae TK, Hink WF, Chalmers J (1990) Biotech Prog 6:383CrossRefGoogle Scholar
  12. 12.
    Hooker BS, Lee JM, An G (1989) Enzyme Microbiol Technol 11:484CrossRefGoogle Scholar
  13. 13.
    Hooker BS, Lee, JM, An G (1990) Biotechnol Bioeng 35:296CrossRefGoogle Scholar
  14. 14.
    Leckie F, Scragg AH, Cliffe KR (1991) Enzyme Microbiol Technol 13:296CrossRefGoogle Scholar
  15. 15.
    Lu GZ, Thompson BG, Gray, MR (1992) Biotech Bioeng 40:1277CrossRefGoogle Scholar
  16. 16.
    McQueen A, Meilhoc E, Bailey JE (1987) Biotech Letters 9:831CrossRefGoogle Scholar
  17. 17.
    Petersen JF, McIntire LV, Papoutsakis ET (1988) J Biotechnol 7:229CrossRefGoogle Scholar
  18. 18.
    Maa YF, Hsu CC (1996) Biotech Bioeng 51:458CrossRefGoogle Scholar
  19. 19.
    Thomas CR, Dunnill P (1979) Biotechnol Bioeng 21:2279CrossRefGoogle Scholar
  20. 20.
    Thomas CR, Nienow AW, Dunnill P (1979) Biotechnol Bioeng 21:2263CrossRefGoogle Scholar
  21. 21.
    Hagerman P (1988) An. Rev Biophys Biophys Chem 17:265CrossRefGoogle Scholar
  22. 22.
    Kaya F, Heitmann JA, Joyce TW (1996) J Biotech 45:23CrossRefGoogle Scholar
  23. 23.
    Virkar PD, Hoare M, Chan MYY, Dunnill P (1982) Biotechnol Bioeng 24:871CrossRefGoogle Scholar
  24. 24.
    Virkar PD, Narendranathan NJ, Hoare M, Dunnill P (1981) Biotechnol Bioeng 23:425CrossRefGoogle Scholar
  25. 25.
    Levinthal C, Davidson PF (1961) J Mol Biol 3:674CrossRefGoogle Scholar
  26. 26.
    Theodossiou I, Collin IJ, Ward JM, Thomas, CR, Dunnill P (1997) Biopro Eng 16:175Google Scholar
  27. 27.
    Fishman DM, Patterson, GD (1996) Biopolymers 38:535CrossRefGoogle Scholar
  28. 28.
    Carlson A, Signs M, Liermann L, Boor R, Jem KJ (1995) Biotechnol Bioeng 48:303CrossRefGoogle Scholar
  29. 29.
    Marquet M, Horn NA, Meek JA (1995) BioPharm 9:26Google Scholar
  30. 30.
    Reese HR, Zimm BH (1990) J Chem Phys, 92:2650CrossRefGoogle Scholar
  31. 31.
    Adam RE, Zimm BH (1977) Nucleic Acids Res 4:1513CrossRefGoogle Scholar
  32. 32.
    Harrington RE, Zimm BH (1964) J Phy Chem 69:161Google Scholar
  33. 33.
    Bowman RD, Davidson N (1972) Biopolymers 2:2601CrossRefGoogle Scholar
  34. 34.
    Davidson PF (1959) Proc Natl Acad Sci 45:1560CrossRefGoogle Scholar
  35. 35.
    Odell JA, Taylor MA (1994) Biopolymers 34:1483CrossRefGoogle Scholar
  36. 36.
    Harrison JS, Gill A, Hoare M (1998) Biotechnol BioEng (in press)Google Scholar
  37. 37.
    McCue JP, Sasagawa PW, Hein RH (1988) Biotechnol Appl Biochem 10:63Google Scholar
  38. 38.
    Young J, Dunnill P (1998) Bioprocess Eng (in press)Google Scholar
  39. 39.
    Ranjan V, Waterbury R, Xiao Z, Diamond SL (1996) Biotechnol Bioeng 49:383CrossRefGoogle Scholar
  40. 40.
    Ayazi Shamlou P, Siddiqi SF, Titchener-Hooker NJ (1995) Chem Eng Sci 50:1383CrossRefGoogle Scholar
  41. 41.
    Papoutsakis ET (1991) Trends in Biotech 9:427CrossRefGoogle Scholar
  42. 42.
    Thomas CR (1990) Problems of shear in biotechnology. In: Winkler M (ed) Chemical engineering problems in biotechnology. Soc Chem Ind, Elsevier Applied ScienceGoogle Scholar
  43. 43.
    Whorlow RW (1980) Rheological Techniques. Ellis Horwood, ChichesterGoogle Scholar
  44. 44.
    Hoare M (1982 a) Trans IChem E 60:70Google Scholar
  45. 45.
    Hoare M (1982b) Trans IChem E 60:157Google Scholar
  46. 46.
    Hoare M, Narendranathan TJ, Flint JR, Heywood-Waddington D, Bell DJ, Dunnill P (1982) I EC Fundamental 21:402CrossRefGoogle Scholar
  47. 47.
    Bell DJ, Dunnill P (1982a) Biotechnol Bioeng 24:1271CrossRefGoogle Scholar
  48. 48.
    Bell DJ, Dunnill P (1982b) Biotechnol Bioeng 24:2319CrossRefGoogle Scholar
  49. 49.
    Chan MYY, Hoare M, Dunnill P (1986) Biotechnol Bioeng 28:387CrossRefGoogle Scholar
  50. 50.
    Glatz CE, Hoare M, Landa-Vertiz J (1986) AIChE J 32:1196CrossRefGoogle Scholar
  51. 51.
    Bell, DJ, Hoare M, Dunnill P (1983) Adv Biochem Eng/Biotechnol 26:1CrossRefGoogle Scholar
  52. 52.
    Twineham M, Hoare M, Bell DJ (1984) Chem Eng Sci 39:509CrossRefGoogle Scholar
  53. 53.
    Devereux N, Hoare M, Dunnill P, Bell DJ (1984) In: Gregory J (ed) Solid-Liquid separation. Chichester, Ellis Horwood Ltd, LondonGoogle Scholar
  54. 54.
    Devereux N, Hoare M, Dunnill P (1986 a) Biotechnol Bioeng 28:88CrossRefGoogle Scholar
  55. 55.
    Devereux N, Hoare M, Dunnill P (1986b) Chem Eng Commun 45:255CrossRefGoogle Scholar
  56. 56.
    Bentham AC, Ireton MJ, Hoare M, Dunnill P (1987) Biotechnol Bioeng 31:984CrossRefGoogle Scholar
  57. 57.
    Hoare M, Dunnill P (1989) Phil Trans R Soc Lond B324:497CrossRefGoogle Scholar
  58. 58.
    Mannweiler K, Titchener-Hooker NJ, Hoare M (1989) IChemE Sym, Adv Biochem Eng, 105Google Scholar
  59. 59.
    Richardson P, Hoare M, Dunnill P (1989) Chem Eng Res Des 67:273Google Scholar
  60. 60.
    Davies PF, Remuzzi A, Gordon EJ, Dewey CF, Gimbrone MA (1986) Proc Natl Acad Sci 83:2114CrossRefGoogle Scholar
  61. 61.
    Ayazi Shamlou P, Makagiansar HY, Ison AP, Lilly MD (1994) Chem Eng Sci 49: 2621–2631CrossRefGoogle Scholar
  62. 62.
    Born C, Zhang Z, Al-Rubeai M, Thomas CR (1992) Biotechnol Bioeng 40:1004CrossRefGoogle Scholar
  63. 63.
    Thorpe NO (1984) Cell Biology. John Wiley Sons, 3Google Scholar
  64. 64.
    Needham D, Ting-Beall HP, Tran-Son-Tay R (1991) Biotechnol Bioeng 38:838CrossRefGoogle Scholar
  65. 65.
    Backman L (1986) J Cell Sci 80:281Google Scholar
  66. 66.
    Berk D, Evans E (1991) Biophys J 59:861Google Scholar
  67. 67.
    Bloom M, Evans E, Mouritsen OG (1991) Quart Reviews of Biophys 24:293Google Scholar
  68. 68.
    Evans EA (1983) Biophys J 43:27CrossRefGoogle Scholar
  69. 69.
    Evans EA (1985) Biophys J 48:175Google Scholar
  70. 70.
    Fisher L (1993) J Chem Soc Faraday Trans 89:2567CrossRefGoogle Scholar
  71. 71.
    Hochmuth RM, Wiles HC, Evans EA, McCown JT (1982) Biophys J 39:83Google Scholar
  72. 72.
    Waugh R, Evans EA (1979) Biophys J 26:115Google Scholar
  73. 73.
    Wessels JGH (1988) Acta Bot Neerl 37:3Google Scholar
  74. 74.
    Barnickel G, Naumann D, Bradaczek H, Labischinski H, Giesbrecht P (1983) The target of Penicillin. Walter de Gruyter, Berlin, 49Google Scholar
  75. 75.
    Phipps LW (1975) J Phys D: Appl Phys 8:448CrossRefGoogle Scholar
  76. 76.
    Grace HP (1982) Chem Eng Commun 14:225CrossRefGoogle Scholar
  77. 77.
    Namdev PK, Dunlop EH (1995) Applied BioChem Biotech 54:109CrossRefGoogle Scholar
  78. 78.
    Ayazi Shamlou P, Stavrinides S, Titchener-Hooker NJ, Hoare M (1994) Chem Eng Sci 49:2647CrossRefGoogle Scholar
  79. 79.
    Heydarian SM, Ison AP, Lilly MD, Ayazi Shamlou P (1998) Biotechnol Bioeng (submitted)Google Scholar
  80. 80.
    Olivier LA, Truskey GA (1993) Biotech Bioeng 42:963CrossRefGoogle Scholar
  81. 81.
    Kolmogoroff AN (1949) Doklady Akad Nauk 66:825Google Scholar
  82. 82.
    Cherry RS, Papoutsakis ET (1986) Biopro Eng 1:29CrossRefGoogle Scholar
  83. 83.
    Cherry RS, Papoutsakis ET (1988) Biotechnol Bioeng 32:1001CrossRefGoogle Scholar
  84. 84.
    Cherry RS, Papoutsakis ET (1989) Biopro Eng 4:81CrossRefGoogle Scholar
  85. 85.
    Ayazi Shamlou P (1993) Processing of solid-liquid suspensions. Butterworth Heinemann, LondonGoogle Scholar
  86. 86.
    Cherry RS, Kwon KY (1990) Biotechnol Bioeng 36:563CrossRefGoogle Scholar
  87. 87.
    Aloi LE, Cherry RS (1994) J Biotech 33:21CrossRefGoogle Scholar
  88. 88.
    Zhang Z, Al-Rubeai M, Thomas CR (1993) 42:987Google Scholar
  89. 89.
    Perry RH, Clinton CH (1973) Chemical Engineer’s Handbook, McGraw-Hill, New YorkGoogle Scholar
  90. 90.
    Bird RB, Stewart WE, Lightfoot EN (1960) Transport Phenomena, WileyGoogle Scholar
  91. 91.
    Davies JT (1972) Turbulence Phenomena, Academic Press, New York, international edition, John Wiley and Sons, SingaporeGoogle Scholar
  92. 92.
    Edwards MF (1985) Mixing of low viscosity liquids in stirred tanks. In: Harnby N, Edwards MF, Nienow AW (eds) Mixing in the process industries. Butterworths, LondonGoogle Scholar
  93. 93.
    Gunkel AA, Weber ME. AIChE J 21:931Google Scholar
  94. 94.
    Placek J, Tavlarides LL (1985) AIChE J 31:1113CrossRefGoogle Scholar
  95. 95.
    Schwartzberg HG, Treybal RE (1968) I EC Fundamentals 7:1CrossRefGoogle Scholar
  96. 96.
    Cutter LA (1966) AIChE J 12:35CrossRefGoogle Scholar
  97. 97.
    Wu H, Patterson GK (1989) Chem Eng Sci 44:2207CrossRefGoogle Scholar
  98. 98.
    Kresta SM, Wood PE (1991) AIChE J 37:448CrossRefGoogle Scholar
  99. 99.
    Aloi LE, Cherry RS (1996) Chem Eng Sci 51:1523CrossRefGoogle Scholar
  100. 100.
    Zhou G, Kresta SM (1996) AIChE J 42:2476CrossRefGoogle Scholar
  101. 101.
    Haas PA, (1987) AIChE J 33:987CrossRefGoogle Scholar
  102. 102.
    Taylor GI (1934) Proc R Soc 146:501CrossRefGoogle Scholar
  103. 103.
    Bagnold RA (1954) Proc R Soc Lond A225:49Google Scholar
  104. 104.
    Kieran PM, O’Donnell HJ, Malone DM, MacLoughlin PF (1995) Biotech Bioeng 45:415CrossRefGoogle Scholar
  105. 105.
    Rumscheidt FD, Mason SG (1961) J Col Sci 16:210CrossRefGoogle Scholar
  106. 106.
    Cogswell FN (1978) J Non-Newtonian Fluid Mech 4:23CrossRefGoogle Scholar
  107. 107.
    Hoare M, Khan MR, Dunnill P (1992) Interfacial damage to proteins during intensive mixing in fermentation and down stream process. In: Van Den Tweei WJJ, Harder A, Buitelaar RM (eds) Stability and stabilization of enzymes, Proc Inter Sym, The Netherland, Elsevier SciGoogle Scholar
  108. 108.
    Gargouri Y, Pieroni G, Riviere C, Sarda L, Verger R (1986) Biochem 25:1733CrossRefGoogle Scholar
  109. 109.
    Rumscheidt FD, Mason SG (1961) J Col Sci 16:238CrossRefGoogle Scholar
  110. 110.
    Hoare M, Narendranathan TJ, Flint JR, Heywood-Waddington D, Bell DJ, Dunnill P (1982) I & ED Fundamentals 21:402CrossRefGoogle Scholar
  111. 111.
    Sadana A (1993), Bioseparation 3:297–320Google Scholar
  112. 112.
    Hua J, Erickson LE, Yiin TY, Glasgow LA (1993) Critical Rev Biotehnol 13:305CrossRefGoogle Scholar
  113. 113.
    Cherry RS, Hulle CT (1992) Biotechnol Prog 8:11CrossRefGoogle Scholar
  114. 114.
    Tramper J, Joustra D, Vlak, JM (1987) Bioreactor design for growth of shear-sensitive insect cell. In: Webb C, Mavituna R (eds) Plant animal cell cultures: process possibilities. Ellis Horwood, EnglandGoogle Scholar
  115. 115.
    Glasgow LA, Jones GT, Erickson LE (1989) Hydrodynamic characterization of airlift bioreactor operation. In: Two-Phase Flows, Tapie, TawanGoogle Scholar
  116. 116.
    Glasgow LA, Hua J, Yiin TY, Erickson LE (1992) Experimental studies of interfacial phenomena in sparged reactors. In: Tatterson GB, Calabrease RV (eds) Process mixing: chemical biochemical applications. AIChE Syposium Series 286Google Scholar
  117. 117.
    Garcia-Briones MA, Brodkey RS, Chalmers JJ (1994) Chem Eng Sci 49:2301CrossRefGoogle Scholar
  118. 118.
    Boulton-Stone JM, Blake JR (1993) J Fluid Mech 254:437CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • S. S. Yim
    • 1
  • P. A. Shamlou
    • 1
  1. 1.The Advanced Centre for Biochemical Engineering, Department of Biochemical EngineeringUniversity College LondonLondonUK

Personalised recommendations