Skip to main content

The Engineering Effects of Fluids Flow on Freely Suspended Biological Macro-Materials and Macromolecules

  • Chapter
  • First Online:
Influence of Stress on Cell Growth and Product Formation

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 67))

Abstract

The manufacture of many biotechnologically important products requires consideration of the physical breakage and biochemical degradation pathways at all stages during processing, storage and transportation. The engineering flow environment in most items of bioprocess equipment has long been recognised as a key factor in determining these pathways and is the focus of the present review. Because of its industrial significance, the detrimental effects of the engineering flow environment on freely suspended bioparticles have been the subject of many scientific investigations over the past few decades. There is a general consensus of opi- nion that fluid shear and elongational stresses are the two main breakage pathways of rele- vance to processing of most biomaterials. An additional degradation pathway has also been identified involving significant losses of biological activity of macromolecules at gas-liquid, gas-solid and liquid-liquid interfaces. In such cases, the engineering flow field is shown to have a secondary role in determining the kinetics of inactivation. An equally important con- sideration in the optimisation of the relevant unit operations is the biomechanical integrity of the flow sensitive material. The biomechanical and biorheological parameters that deter- mine the integrity of biomaterials are poorly defined, their evaluations present future re- search challenges and are of immediate engineering significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu-Reesh I, Kargi F (1989) J Biotech 9:167

    Article  CAS  Google Scholar 

  2. Al-Rubeai M, Singh RP, Goldman MH, Emery AN (1995) Biotech Bioeng 45:463

    Article  CAS  Google Scholar 

  3. Bhat VD, Windridge PA, Cherry RS, Mandel LJ (1995) Biotechnol Prog 11:596

    Article  CAS  Google Scholar 

  4. Cherry RS (1993) Biotech Adv 2:279

    Article  Google Scholar 

  5. Croughan MS, Hamel JF, Wang DIC (1987) Biotechnol Bioeng 29:130

    Article  CAS  Google Scholar 

  6. Croughan MS, Sayre ES, Wang DIC (1989) Biotechnol Bioeng 33:862

    Article  CAS  Google Scholar 

  7. Croughan MS, Wang DIC (1989) Biotechnol Bioeng 33:731

    Article  CAS  Google Scholar 

  8. Dunlop EH, Namdev PK, Rosenberg MZ (1994) Chem Eng Sci 49:2263

    Article  CAS  Google Scholar 

  9. Frangos JA, McIntire LV, Eskin SG (1988) Biotechnol Bioeng 32:1053

    Article  CAS  Google Scholar 

  10. Garcia-Briones MA, Chalmers JJ (1994) Biotech Bioeng 44:1089

    Article  CAS  Google Scholar 

  11. Goldblum S, Bae TK, Hink WF, Chalmers J (1990) Biotech Prog 6:383

    Article  CAS  Google Scholar 

  12. Hooker BS, Lee JM, An G (1989) Enzyme Microbiol Technol 11:484

    Article  CAS  Google Scholar 

  13. Hooker BS, Lee, JM, An G (1990) Biotechnol Bioeng 35:296

    Article  CAS  Google Scholar 

  14. Leckie F, Scragg AH, Cliffe KR (1991) Enzyme Microbiol Technol 13:296

    Article  CAS  Google Scholar 

  15. Lu GZ, Thompson BG, Gray, MR (1992) Biotech Bioeng 40:1277

    Article  CAS  Google Scholar 

  16. McQueen A, Meilhoc E, Bailey JE (1987) Biotech Letters 9:831

    Article  CAS  Google Scholar 

  17. Petersen JF, McIntire LV, Papoutsakis ET (1988) J Biotechnol 7:229

    Article  CAS  Google Scholar 

  18. Maa YF, Hsu CC (1996) Biotech Bioeng 51:458

    Article  CAS  Google Scholar 

  19. Thomas CR, Dunnill P (1979) Biotechnol Bioeng 21:2279

    Article  CAS  Google Scholar 

  20. Thomas CR, Nienow AW, Dunnill P (1979) Biotechnol Bioeng 21:2263

    Article  CAS  Google Scholar 

  21. Hagerman P (1988) An. Rev Biophys Biophys Chem 17:265

    Article  CAS  Google Scholar 

  22. Kaya F, Heitmann JA, Joyce TW (1996) J Biotech 45:23

    Article  CAS  Google Scholar 

  23. Virkar PD, Hoare M, Chan MYY, Dunnill P (1982) Biotechnol Bioeng 24:871

    Article  CAS  Google Scholar 

  24. Virkar PD, Narendranathan NJ, Hoare M, Dunnill P (1981) Biotechnol Bioeng 23:425

    Article  CAS  Google Scholar 

  25. Levinthal C, Davidson PF (1961) J Mol Biol 3:674

    Article  CAS  Google Scholar 

  26. Theodossiou I, Collin IJ, Ward JM, Thomas, CR, Dunnill P (1997) Biopro Eng 16:175

    CAS  Google Scholar 

  27. Fishman DM, Patterson, GD (1996) Biopolymers 38:535

    Article  CAS  Google Scholar 

  28. Carlson A, Signs M, Liermann L, Boor R, Jem KJ (1995) Biotechnol Bioeng 48:303

    Article  CAS  Google Scholar 

  29. Marquet M, Horn NA, Meek JA (1995) BioPharm 9:26

    Google Scholar 

  30. Reese HR, Zimm BH (1990) J Chem Phys, 92:2650

    Article  CAS  Google Scholar 

  31. Adam RE, Zimm BH (1977) Nucleic Acids Res 4:1513

    Article  CAS  Google Scholar 

  32. Harrington RE, Zimm BH (1964) J Phy Chem 69:161

    Google Scholar 

  33. Bowman RD, Davidson N (1972) Biopolymers 2:2601

    Article  Google Scholar 

  34. Davidson PF (1959) Proc Natl Acad Sci 45:1560

    Article  Google Scholar 

  35. Odell JA, Taylor MA (1994) Biopolymers 34:1483

    Article  CAS  Google Scholar 

  36. Harrison JS, Gill A, Hoare M (1998) Biotechnol BioEng (in press)

    Google Scholar 

  37. McCue JP, Sasagawa PW, Hein RH (1988) Biotechnol Appl Biochem 10:63

    CAS  Google Scholar 

  38. Young J, Dunnill P (1998) Bioprocess Eng (in press)

    Google Scholar 

  39. Ranjan V, Waterbury R, Xiao Z, Diamond SL (1996) Biotechnol Bioeng 49:383

    Article  CAS  Google Scholar 

  40. Ayazi Shamlou P, Siddiqi SF, Titchener-Hooker NJ (1995) Chem Eng Sci 50:1383

    Article  CAS  Google Scholar 

  41. Papoutsakis ET (1991) Trends in Biotech 9:427

    Article  CAS  Google Scholar 

  42. Thomas CR (1990) Problems of shear in biotechnology. In: Winkler M (ed) Chemical engineering problems in biotechnology. Soc Chem Ind, Elsevier Applied Science

    Google Scholar 

  43. Whorlow RW (1980) Rheological Techniques. Ellis Horwood, Chichester

    Google Scholar 

  44. Hoare M (1982 a) Trans IChem E 60:70

    Google Scholar 

  45. Hoare M (1982b) Trans IChem E 60:157

    CAS  Google Scholar 

  46. Hoare M, Narendranathan TJ, Flint JR, Heywood-Waddington D, Bell DJ, Dunnill P (1982) I EC Fundamental 21:402

    Article  CAS  Google Scholar 

  47. Bell DJ, Dunnill P (1982a) Biotechnol Bioeng 24:1271

    Article  CAS  Google Scholar 

  48. Bell DJ, Dunnill P (1982b) Biotechnol Bioeng 24:2319

    Article  CAS  Google Scholar 

  49. Chan MYY, Hoare M, Dunnill P (1986) Biotechnol Bioeng 28:387

    Article  CAS  Google Scholar 

  50. Glatz CE, Hoare M, Landa-Vertiz J (1986) AIChE J 32:1196

    Article  CAS  Google Scholar 

  51. Bell, DJ, Hoare M, Dunnill P (1983) Adv Biochem Eng/Biotechnol 26:1

    Article  CAS  Google Scholar 

  52. Twineham M, Hoare M, Bell DJ (1984) Chem Eng Sci 39:509

    Article  CAS  Google Scholar 

  53. Devereux N, Hoare M, Dunnill P, Bell DJ (1984) In: Gregory J (ed) Solid-Liquid separation. Chichester, Ellis Horwood Ltd, London

    Google Scholar 

  54. Devereux N, Hoare M, Dunnill P (1986 a) Biotechnol Bioeng 28:88

    Article  CAS  Google Scholar 

  55. Devereux N, Hoare M, Dunnill P (1986b) Chem Eng Commun 45:255

    Article  CAS  Google Scholar 

  56. Bentham AC, Ireton MJ, Hoare M, Dunnill P (1987) Biotechnol Bioeng 31:984

    Article  Google Scholar 

  57. Hoare M, Dunnill P (1989) Phil Trans R Soc Lond B324:497

    Article  CAS  Google Scholar 

  58. Mannweiler K, Titchener-Hooker NJ, Hoare M (1989) IChemE Sym, Adv Biochem Eng, 105

    Google Scholar 

  59. Richardson P, Hoare M, Dunnill P (1989) Chem Eng Res Des 67:273

    CAS  Google Scholar 

  60. Davies PF, Remuzzi A, Gordon EJ, Dewey CF, Gimbrone MA (1986) Proc Natl Acad Sci 83:2114

    Article  CAS  Google Scholar 

  61. Ayazi Shamlou P, Makagiansar HY, Ison AP, Lilly MD (1994) Chem Eng Sci 49: 2621–2631

    Article  Google Scholar 

  62. Born C, Zhang Z, Al-Rubeai M, Thomas CR (1992) Biotechnol Bioeng 40:1004

    Article  CAS  Google Scholar 

  63. Thorpe NO (1984) Cell Biology. John Wiley Sons, 3

    Google Scholar 

  64. Needham D, Ting-Beall HP, Tran-Son-Tay R (1991) Biotechnol Bioeng 38:838

    Article  CAS  Google Scholar 

  65. Backman L (1986) J Cell Sci 80:281

    CAS  Google Scholar 

  66. Berk D, Evans E (1991) Biophys J 59:861

    CAS  Google Scholar 

  67. Bloom M, Evans E, Mouritsen OG (1991) Quart Reviews of Biophys 24:293

    CAS  Google Scholar 

  68. Evans EA (1983) Biophys J 43:27

    Article  CAS  Google Scholar 

  69. Evans EA (1985) Biophys J 48:175

    CAS  Google Scholar 

  70. Fisher L (1993) J Chem Soc Faraday Trans 89:2567

    Article  CAS  Google Scholar 

  71. Hochmuth RM, Wiles HC, Evans EA, McCown JT (1982) Biophys J 39:83

    CAS  Google Scholar 

  72. Waugh R, Evans EA (1979) Biophys J 26:115

    CAS  Google Scholar 

  73. Wessels JGH (1988) Acta Bot Neerl 37:3

    Google Scholar 

  74. Barnickel G, Naumann D, Bradaczek H, Labischinski H, Giesbrecht P (1983) The target of Penicillin. Walter de Gruyter, Berlin, 49

    Google Scholar 

  75. Phipps LW (1975) J Phys D: Appl Phys 8:448

    Article  Google Scholar 

  76. Grace HP (1982) Chem Eng Commun 14:225

    Article  CAS  Google Scholar 

  77. Namdev PK, Dunlop EH (1995) Applied BioChem Biotech 54:109

    Article  CAS  Google Scholar 

  78. Ayazi Shamlou P, Stavrinides S, Titchener-Hooker NJ, Hoare M (1994) Chem Eng Sci 49:2647

    Article  Google Scholar 

  79. Heydarian SM, Ison AP, Lilly MD, Ayazi Shamlou P (1998) Biotechnol Bioeng (submitted)

    Google Scholar 

  80. Olivier LA, Truskey GA (1993) Biotech Bioeng 42:963

    Article  CAS  Google Scholar 

  81. Kolmogoroff AN (1949) Doklady Akad Nauk 66:825

    Google Scholar 

  82. Cherry RS, Papoutsakis ET (1986) Biopro Eng 1:29

    Article  Google Scholar 

  83. Cherry RS, Papoutsakis ET (1988) Biotechnol Bioeng 32:1001

    Article  CAS  Google Scholar 

  84. Cherry RS, Papoutsakis ET (1989) Biopro Eng 4:81

    Article  Google Scholar 

  85. Ayazi Shamlou P (1993) Processing of solid-liquid suspensions. Butterworth Heinemann, London

    Google Scholar 

  86. Cherry RS, Kwon KY (1990) Biotechnol Bioeng 36:563

    Article  CAS  Google Scholar 

  87. Aloi LE, Cherry RS (1994) J Biotech 33:21

    Article  CAS  Google Scholar 

  88. Zhang Z, Al-Rubeai M, Thomas CR (1993) 42:987

    Google Scholar 

  89. Perry RH, Clinton CH (1973) Chemical Engineer’s Handbook, McGraw-Hill, New York

    Google Scholar 

  90. Bird RB, Stewart WE, Lightfoot EN (1960) Transport Phenomena, Wiley

    Google Scholar 

  91. Davies JT (1972) Turbulence Phenomena, Academic Press, New York, international edition, John Wiley and Sons, Singapore

    Google Scholar 

  92. Edwards MF (1985) Mixing of low viscosity liquids in stirred tanks. In: Harnby N, Edwards MF, Nienow AW (eds) Mixing in the process industries. Butterworths, London

    Google Scholar 

  93. Gunkel AA, Weber ME. AIChE J 21:931

    Google Scholar 

  94. Placek J, Tavlarides LL (1985) AIChE J 31:1113

    Article  CAS  Google Scholar 

  95. Schwartzberg HG, Treybal RE (1968) I EC Fundamentals 7:1

    Article  CAS  Google Scholar 

  96. Cutter LA (1966) AIChE J 12:35

    Article  CAS  Google Scholar 

  97. Wu H, Patterson GK (1989) Chem Eng Sci 44:2207

    Article  CAS  Google Scholar 

  98. Kresta SM, Wood PE (1991) AIChE J 37:448

    Article  CAS  Google Scholar 

  99. Aloi LE, Cherry RS (1996) Chem Eng Sci 51:1523

    Article  CAS  Google Scholar 

  100. Zhou G, Kresta SM (1996) AIChE J 42:2476

    Article  CAS  Google Scholar 

  101. Haas PA, (1987) AIChE J 33:987

    Article  CAS  Google Scholar 

  102. Taylor GI (1934) Proc R Soc 146:501

    Article  CAS  Google Scholar 

  103. Bagnold RA (1954) Proc R Soc Lond A225:49

    Google Scholar 

  104. Kieran PM, O’Donnell HJ, Malone DM, MacLoughlin PF (1995) Biotech Bioeng 45:415

    Article  CAS  Google Scholar 

  105. Rumscheidt FD, Mason SG (1961) J Col Sci 16:210

    Article  CAS  Google Scholar 

  106. Cogswell FN (1978) J Non-Newtonian Fluid Mech 4:23

    Article  CAS  Google Scholar 

  107. Hoare M, Khan MR, Dunnill P (1992) Interfacial damage to proteins during intensive mixing in fermentation and down stream process. In: Van Den Tweei WJJ, Harder A, Buitelaar RM (eds) Stability and stabilization of enzymes, Proc Inter Sym, The Netherland, Elsevier Sci

    Google Scholar 

  108. Gargouri Y, Pieroni G, Riviere C, Sarda L, Verger R (1986) Biochem 25:1733

    Article  CAS  Google Scholar 

  109. Rumscheidt FD, Mason SG (1961) J Col Sci 16:238

    Article  CAS  Google Scholar 

  110. Hoare M, Narendranathan TJ, Flint JR, Heywood-Waddington D, Bell DJ, Dunnill P (1982) I & ED Fundamentals 21:402

    Article  CAS  Google Scholar 

  111. Sadana A (1993), Bioseparation 3:297–320

    CAS  Google Scholar 

  112. Hua J, Erickson LE, Yiin TY, Glasgow LA (1993) Critical Rev Biotehnol 13:305

    Article  CAS  Google Scholar 

  113. Cherry RS, Hulle CT (1992) Biotechnol Prog 8:11

    Article  CAS  Google Scholar 

  114. Tramper J, Joustra D, Vlak, JM (1987) Bioreactor design for growth of shear-sensitive insect cell. In: Webb C, Mavituna R (eds) Plant animal cell cultures: process possibilities. Ellis Horwood, England

    Google Scholar 

  115. Glasgow LA, Jones GT, Erickson LE (1989) Hydrodynamic characterization of airlift bioreactor operation. In: Two-Phase Flows, Tapie, Tawan

    Google Scholar 

  116. Glasgow LA, Hua J, Yiin TY, Erickson LE (1992) Experimental studies of interfacial phenomena in sparged reactors. In: Tatterson GB, Calabrease RV (eds) Process mixing: chemical biochemical applications. AIChE Syposium Series 286

    Google Scholar 

  117. Garcia-Briones MA, Brodkey RS, Chalmers JJ (1994) Chem Eng Sci 49:2301

    Article  CAS  Google Scholar 

  118. Boulton-Stone JM, Blake JR (1993) J Fluid Mech 254:437

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yim, S.S., Shamlou, P.A. (2000). The Engineering Effects of Fluids Flow on Freely Suspended Biological Macro-Materials and Macromolecules. In: Schügerl, K., et al. Influence of Stress on Cell Growth and Product Formation. Advances in Biochemical Engineering/Biotechnology, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47865-5_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-47865-5_3

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66687-5

  • Online ISBN: 978-3-540-47865-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics