Skip to main content

Properties and Frequency Conversion of High-Brightness Diode-Laser Systems

  • Chapter
  • First Online:
  • 1052 Accesses

Part of the book series: Topics in Applied Physics ((TAP,volume 78))

Abstract

An overview of recent developments in the field of high-power, high-brightness diode-lasers, and the optically nonlinear conversion of their output into other wavelength ranges, is given. We describe the generation of continuous-wave (CW) laser beams at power levels of several hundreds of milliwatts to several watts with near-perfect spatial and spectral properties using Master-Oscillator Power-Amplifier (MOPA) systems. With single-or double-stage systems, using amplifiers of tapered or rectangular geometry, up to 2.85 W high-brightness radiation is generated at wavelengths around 810 nm with AlGaAs diodes. Even higher powers, up to 5.2 W of single-frequency and high spatial quality beams at 925 nm, are obtained with InGaAs diodes. We describe the basic properties of the oscillators and amplifiers used. A strict proof-of-quality for the diode radiation is provided by direct and efficient nonlinear optical conversion of the diode MOPA output into other wavelength ranges. We review recent experiments with the highest power levels obtained so far by direct frequency doubling of diode radiation. In these experiments, 100 mW single-frequency ultraviolet light at 403 nm was generated, as well as 1W of single-frequency blue radiation at 465 nm. Nonlinear conversion of diode radiation into widely tunable infrared radiation has recently yielded record values. We review the efficient generation of widely tunable single-frequency radiation in the infrared with diode-pumped Optical Parametric Oscillators (OPOs). With this system, single-frequency output radiation with powers of more than 0.5 W was generated, widely tunable around wavelengths of 2.1µm and 1.65µm and with excellent spectral and spatial quality. These developments are clear indicators of recent advances in the field of high-brightness diode-MOPA systems, and may emphasize their future central importance for applications within a vast range of optical wavelengths.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Svelto: Principles of Lasers (Plenum, New York 1998)

    Google Scholar 

  2. A. E. Siegman: Lasers (Univ. Science Books, Mill Valley, CA 1986)

    Google Scholar 

  3. P. W. Milonni, J. H. Eberly: Lasers (Wiley, New York 1988)

    Google Scholar 

  4. K. Petermann: Laser Diode Modulation and Noise (Kluwer Academic, Dordrecht, KTK Scientific Publishers, Tokyo 1988)

    Google Scholar 

  5. G. P. Agrawal (ed.): Semiconductor Lasers: Past, Present, and Future (American Institute of Physics, Woodbury 1995)

    Google Scholar 

  6. C. H. Henry: Line Broadening of Semiconductor Lasers, In: Y. Yamamoto (Ed.) Coherence, Amplification, and Quantum Effects in Semiconductor Lasers (Wiley, New York 1991)

    Google Scholar 

  7. Spectra Diode Laboratories (SDL) Inc., San Jose, CA, USA

    Google Scholar 

  8. R. M. Hofstra: On the Optical Performance of the Long Pulse XeCl * Excimer Laser (Koninklijke Bibliotheek, Den Haag 1999)

    Google Scholar 

  9. H. Kogelnik, T. Li: Laser Beams and Resonators, Appl. Opt. 5, 1550 (1966)

    Article  ADS  Google Scholar 

  10. G. D. Boyd, D. A. Kleinman: Parametric Interaction of Focused Gaussian Light Beams, J. Appl. Phys. 39, 3597 (1998)

    Article  ADS  Google Scholar 

  11. K. Shinozaki, C.-Q. Xu, H. Sasaki, T. Kamijoh: A Comparison of Optical Second-Harmonic Generation Efficiency Using Bessel and Gaussian Beams in Bulk Crystals, Opt. Commun. 133, 300–304 (1997)

    Article  ADS  Google Scholar 

  12. J. Arlt, K. Dholakia, M. J. Padgett: Second-Harmonic Generation Efficiency of Bessel Beams, Quantum Electron. and Laser Science Conference, QELS, Baltimore, MA (May 1999) paper QTuB4

    Google Scholar 

  13. B. Beier, J.-P. Meyn, R. Knappe, K.-J. Boller, G. Huber, R. Wallenstein: A 180mW Nd:LaSc3(BO3)4 Single-Frequency TEM00 Microchip Laser Pumped by an Injection-Locked Diode Laser Array, Appl. Phys. B 58, 381–388 (1994)

    Article  ADS  Google Scholar 

  14. M. W. Sasnett: Properties of Multimode Laser Beams-The M2 Factor, In D. R. Hall, P. E. Jackson (eds.): The Physics and Technology of Laser Resonators (Institute of Physics-Publishing, London 1992)

    Google Scholar 

  15. G. Nemes, A. E. Siegman: Measurement of All Ten Second-Order Moments of an Astigmatic Beam by the Use of Rotating Simple Astigmatic (Anamorphic) Optics, J. Opt. Soc. Am. A 11, 2257–2264 (1994)

    Article  ADS  Google Scholar 

  16. Y. Champagne: Second-Moment Approach to the Time-Averaged Spatial Characterization of Multiple-Transverse-Mode Laser Beams, J. Opt. Soc. Am. A 12, 1707–1714 (1995)

    Article  ADS  Google Scholar 

  17. C. Paré, P. A. Bélanger: Propagation Law and Quasi-Invariance Properties of the Truncated Second-Order Moment of a Diffracted Laser Beam, Opt. Commun. 123, 679–693 (1996)

    Article  ADS  Google Scholar 

  18. J. M. Fleischer: Calibration Standard for Laser Beam Profilers: Method for Absolute Accuracy, Appl. Opt. 35, 1719 (1996)

    Article  ADS  Google Scholar 

  19. J. M. Fleischer: Gaussian Beam Profiling: How and Why, in C. B. Hitz: Laser & Optronics 6, 61 (1987)

    Google Scholar 

  20. J. M. Fleischer: Standardizing the Measurement of Spatial Characteristics of Optical Beams, SPIE Proc. 888, 60 (1988)

    Google Scholar 

  21. D. L. Wright, P. Greve, J. Fleischer, L. Austin: Laser Beam width, Divergence and Beam Propagation Factor-An International Standardization Approach, Opt. Quantum Electron. 24, S993 (1992)

    Article  Google Scholar 

  22. A. E. Siegman: Analysis of Laser Beam Quality Degradation Caused by Quartic Phase Aberrations, Appl. Opt. 32, 5893–5901 (1993)

    Article  ADS  Google Scholar 

  23. J. M. Geary: Introductions to Wavefront Sensors (SPIE, Washington 1995)

    Book  Google Scholar 

  24. D. Malacara: Optical Shop Testing, 2nd edn. (Wiley, New York 1992)

    Google Scholar 

  25. R. Kingslake: Lens Design Short Course, SPIE Proc. 380, 485 (1983)

    Google Scholar 

  26. R. Kingslake: Some Interesting and Unusual Lenses, SPIE Proc. 237, 448 (1980)

    Google Scholar 

  27. R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, R. O. Calson: Coherent Light Emission from Gaas Junctions, Phys. Rev. Lett. 9, 366 (1962)

    Article  ADS  Google Scholar 

  28. Y. Arakawa, H. Sasaki: Multidimensional Quantum Well Laser and Temperature Dependence of Its Output, Appl. Phys. Lett. 40, 939 (1982)

    Article  ADS  Google Scholar 

  29. M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, D. Bimberg: New Semiconductor Lasers Based on Quantum Dots, Laser & Optoelectronics 30, 70 (1998) (in german)

    Google Scholar 

  30. K. J. Ebeling: Integrated Optoelectronics (Springer, Berlin, Heidelberg 1992)

    Google Scholar 

  31. R. G. Hunsperger: Integrated Optics: Theory and Technology, 3rd edn., Springer Ser. Opt. Sci. 33 (Springer, Berlin, Heidelberg 1991)

    Google Scholar 

  32. P. Werle: A Review of Recent Advances in Semiconductor Laser Based Gas Monitors, Spectrochim. Acta A 54, 197–236 (1998)

    Article  ADS  Google Scholar 

  33. S. Nakamura, M. Senoh, S. Hagahama, N. Iwasi, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto: InGaN Based Multi-Quantum-Well-Structure Laser Diodes, Jpn. J. Appl. Phys. 135, 74 (1996)

    Article  Google Scholar 

  34. S. Nakamura, G. Fasol: The Blue Diode Laser, 2nd edn. (Springer, Berlin, Heidelberg 2000) in press

    Google Scholar 

  35. C. Becher, E. Gehrig, K.-J. Boller: Spectrally Asymmetric Mode Correlation and Intensity Noise in Pump-Noise-Suppressed Laser Diodes, Phys. Rev. A 57, 3952 (1998)

    Article  ADS  Google Scholar 

  36. K. Liu, M. G. Littman: Novel Geometry for Single-Mode Scanning of Tunable Lasers, Opt. Lett. 6, 117 (1981)

    Article  ADS  Google Scholar 

  37. P. McNicholl, H. J. Metcalf: Synchronous Cavity Mode and Feedback Scanning in a Dye Laser Oscillator with Gratings, Appl. Opt. 24, 2757 (1985)

    Article  ADS  Google Scholar 

  38. Y. Shevy, H. Deng: Frequency-Stable and Ultra-Narrow Linewidth Semicon-ductor Laser Locked Directly to an Atomic-Cesium Transition, Opt. Lett. 23, 472 (1998)

    Article  ADS  Google Scholar 

  39. D. Botez, D. R. Scifres: Diode Laser Arrays (Cambridge Univ. Press, Cambridge 1994)

    Book  Google Scholar 

  40. N. W. Carlson: In A. L. Schawlow (ed.): Monolithic Diode-Laser Arrays, Springer Ser. Electron. Photon. 33 (Springer, Berlin, Heidelberg 1994)

    Google Scholar 

  41. E. Kapon, J. Katz, A. Yariv: Supermode Analysis of Phase-Locked Arrays of Semiconductor Lasers, Opt. Lett. 10, 125 (1984)

    Article  ADS  Google Scholar 

  42. G. R. Hadley, J. P. Hohimer, A. Owyoung: High-Order ν > 10) Eigenmodes in Ten-Stripe Gain-Guided Diode Laser Arrays, Appl. Phys. Lett. 49, 684 (1986)

    Article  ADS  Google Scholar 

  43. J. M. Verdiell, R. Frey: A Broad-Area Mode-Coupling Model for Multiple-Stripe Semiconductor Lasers, IEEE J. QE 26, 270 (1990)

    Article  Google Scholar 

  44. H. Adachihara, O. Hess, E. Abraham, P. Ru, J. V. Moloney: Spatiotemporal Choas in Broad-Area Semiconductor Lasers, J. Opt. Soc. Am. B 10, 658 (1993)

    Article  ADS  Google Scholar 

  45. R. Waarts, D. Mehuys, D. Nam, D. Welch, W. Streifer, D. Scifres: 900 mW, CW Nearly Diffraction Limited Output from a GaAlAs Semiconductor Laser Array in an External Talbot Cavity, Int. Conf. Lasers Electro-Optics, CLEO (1991) paper CWE7

    Google Scholar 

  46. J. E. Epler, N. Holonyak Jr., R. D. Burnham, T. L. Paoli, W. Streifer: Supermodes of Multiple-Stripe Quantum-Well Heterostructure Laser Diodes Operated (CW, 300 K) in an External-Grating Cavity, J. Appl. Phys. 57, 1489 (1985)

    Article  ADS  Google Scholar 

  47. S. MacCormack, R. W. Eason: Near-Diffraction-Limited Single-Lobe Emission from a High-Power Diode Laser Array Coupled to a Photorefractive Self-Pumped Phase-Conjugate Mirror, Opt. Lett. 16, 705 (1991)

    Article  ADS  Google Scholar 

  48. A. Larsson, M. Mittelstein, Y. Arakawa, A. Yariv: High-Efficiency Broad-Area Single Quantum-Well Lasers with Narrow Single-Lobed Far-Field Patterns Prepared by Molecular Beam Epitaxy, Electron. Lett. 22, 79 (1986)

    Article  ADS  Google Scholar 

  49. L. J. Mawst, D. Botez, M. Jansen, T. J. Roth, J. Rozenbergs: 1.5 W Diffraction-Limited Operation from Resonant-Optical Waveguide, Electron. Lett. 27, 369 (1991)

    Article  ADS  Google Scholar 

  50. L. J. Mawst, D. Botez, M. Jansen, T. J. Roth, C. Zmudzinski: 0.5 W CW Diffraction-Limited-Beam Operation from High-Efficiency Resonant-Optical-Waveguide Diode Laser Arrays, Electron. Lett. 27, 1586 (1991)

    Article  ADS  Google Scholar 

  51. S. D. DeMars, K. M. Dzurko, R. J. Lang, D. F. Welch, D. R. Scifres, A. Hardy: Angled Grating Distributed Feedback Laser with 1 W CW Single-Mode Diffraction-Limited Output At 980 nm, Proc. Int. Conf. Lasers Electro-Optics, CLEO, OSA Tech. Dig. Ser. 9, Optical Society of America, Washington, DC (1996) p. 77, paper CTuC2

    Google Scholar 

  52. L. Goldberg, H. F. Taylor, J. F. Weller: Injection-Locking of Coupled-Stripe Diode Laser Arrays, Appl. Phys. Lett. 46, 236 (1985)

    Article  ADS  Google Scholar 

  53. J. Hohimer, D. R. Myers, T. M. Brennan, B. E. Hammons: Injection-Locking Characteristics of Gain-Guided Diode Laser Arrays with an “On-Chip” Master Laser, Appl. Phys. Lett. 56, 1521 (1990)

    Article  ADS  Google Scholar 

  54. L. Y. Pang, E. S. Kintzner, J. G. Fujimoto: Two-Stage Injection Locking of High-Power Semiconductor Laser Arrays, Opt. Lett. 15, 728 (1990)

    Article  ADS  Google Scholar 

  55. L. Goldberg, D. Mehuys, M. R. Surette, D. C. Hall: High-Power near Diffraction-Limited Large-Area Travelling-Wave Semiconductor Amplifiers, IEEE J. Quantum Electron. 29, 2028 (1993)

    Article  ADS  Google Scholar 

  56. L. Goldberg, D. Mehuys: High-Power Semiconductor Amplifiers, Int. Conf. Lasers Electro-Optics, CLEO (1993) p. 105, paper CTuI1

    Google Scholar 

  57. E. Gehrig, B. Beier, K.-J. Boller, R. Wallenstein: Experimental Characterization and Numerical Modelling of an AlGaAs Broad-Area Oscillator Amplifier System, Appl. Phys. B 66, 287–293 (1998)

    Article  ADS  Google Scholar 

  58. G. Bedelli, K. Komori, S. Arai, Y. Suematsu: A New Structure for High-Power TW-SLA (Travelling Wave Semiconductor Laser Amplifier), IEEE Photon. Technol. Lett. 3, 42 (1991)

    Article  ADS  Google Scholar 

  59. J. Walpole, E. Kintzner, S. Chinn, C. Wang, L. Missagia: High-Power Strained-Laser InGaAs/AlGaAs Tapered Travelling Wave Amplifier, Appl Phys. Lett. 61, 740 (1992)

    Article  ADS  Google Scholar 

  60. D. Mehuys, D. Welch, L. Goldberg: 2 W CW Diffraction-Limited Tapered Am-plifier with Diode Injection, Electron. Lett. 28, 1944 (1992)

    Article  ADS  Google Scholar 

  61. D. Mehuys, L. Goldberg, D. F. Welch: 5.25 W CW Near-Diffraction-Limited Tapered-Stripe Semiconductor Optical Amplifier, IEEE Photon. Technol. Lett. 5, 1179 (1993)

    Article  ADS  Google Scholar 

  62. L. Goldberg, D. A. V. Kliner: Tunable UV Generation at 286 nm by Frequency Tripling of a High-Power Mode-Locked Semiconductor Laser, Opt. Lett. 20, 1640 (1995)

    Article  ADS  Google Scholar 

  63. A. Robertson, R. Knappe, R. Wallenstein: Kerr-Lens Mode-Locked Cr:LiSAF Femtosecond Laser Pumped by the Diffraction Limited Output of a 672 nm Diode-Laser Master-Oscillator Power-Amplifier System, J. Opt. Soc. Am. B 14, 672–675 (1997)

    Article  ADS  Google Scholar 

  64. C. Zimmermann, V. Vuletic, A. Hemmerich, T. W. Hänsch: All Solid State Laser Source for Tunable Blue and Ultraviolet Radiation, Appl. Phys. Lett. 66, 2318 (1995)

    Article  ADS  Google Scholar 

  65. B. Beier, D. Woll, M. Scheidt, K.-J. Boller, R. Wallenstein: Second Harmonic Generation of the Output of an Algaas Diode Oscillator Amplifier System in Critically Phase-Matched LiB3O5 and β-BaB2O4, Appl. Phys. Lett. 71, 315–317 (1997)

    Article  ADS  Google Scholar 

  66. D. Woll, B. Beier, K.-J. Boller, R. Wallenstein, M. Hagberg, S. O’Brian: 1 Watt of Blue 465 nm Radiation Generated by Frequency Doubling the Output of a High-Power Diode Laser in Critically Phase-Matched LiB3O5, Opt. Lett. 24, 691 (1999)

    Article  ADS  Google Scholar 

  67. T. W. Hänsch, B. Couillaud: Laser Frequency Stabilization by Polarization Spectroscopy of a Reflecting Reference Cavity, Opt. Commun. 35, 441 (1980)

    Article  ADS  Google Scholar 

  68. A. Yariv: Quantum Electronics, 3rd edn. (Wiley, New York 1989)

    Google Scholar 

  69. R. L. Sutherland: The Handbook of Nonlinear Optics (Dekker, New York 1996)

    Google Scholar 

  70. G. M. Gibson, M. H. Dunn, M. J. Padgett: Application of a Continuously Tunable CW Optical Parametric Oscillator for High Resolution Spectroscopy, Opt. Lett. 23, 40 (1998)

    Article  ADS  Google Scholar 

  71. G. M. Gibson, M. Ebrahimzadeh, M. J. Padgett, M. H. Dunn: Continuous-Wave Optical Parametric Oscillator Based on Periodically Poled KTiOPO4 and Its Application to Spectroscopy, Opt. Lett. 24, 397 (1999)

    Article  ADS  Google Scholar 

  72. R. Al-Tahtamouni, K. Bencheikh, R. Storz, K. Schneider, M. Lang, J. Mlynek, S. Schiller: Long-Term Stable and Absolute Frequency Stabilization of Doubly Resonant Parametric Oscillators, Appl. Phys. B 66, 733 (1998)

    Article  ADS  Google Scholar 

  73. T. Ikegami, A. Slyusarev, S. Ohshima, E. Sakuma: Accuracy of an Optical Parametric Oscillator as an Optical Frequency Divider, Opt. Commun. 127, 69 (1997)

    Article  ADS  Google Scholar 

  74. N. C. Wong: Optical Frequency Division Using an Optical Parametric Oscillator, Opt. Lett. 15, 1129 (1990)

    Article  ADS  Google Scholar 

  75. D.-H. Lee, M. E. Klein, P. Groß, J.-P. Meyn, R. Wallenstein, K.-J. Boller: Self-Injection-Locking of a CW-OPO by Intracavity Frequency Doubling of the Idler Wave, Opt. Express 5, 114 (1999)

    Article  ADS  Google Scholar 

  76. R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky, R. L. Byer: Optical Parametric Oscillator Frequency Tuning and Control, J. Opt. Soc. Am. B 8, 646 (1991)

    Article  ADS  Google Scholar 

  77. M. Scheidt, B. Beier, R. Knappe, K.-J. Boller, R. Wallenstein: Diode-Laser-Pumped Continuous-Wave KTP Optical Parametric Oscillator, J. Opt. Soc. Am. B 12, 2087–2094 (1995)

    Article  ADS  Google Scholar 

  78. K.-J. Boller, M. Scheidt, B. Beier, C. Becher, M. E. Klein, D.-H. Lee: Diode-Pumped Optical Parametric Oscillators, Quantum Semiclass. Opt. 9, 173–189 (1997)

    Article  ADS  Google Scholar 

  79. M. Scheidt, B. Beier, K.-J. Boller, R. Wallenstein: Frequency-Stable Operation of a Diode-Pumped Continuous-Wave RbTiOAsO4 Optical Parametric Oscillator, Opt. Lett. 22, 1287–1289 (1997)

    Article  ADS  Google Scholar 

  80. D.-H. Lee, M. E. Klein, K.-J. Boller: Intensity-Noise of Pump-Enhanced Continuous-Wave Optical Parametric Oscillators, Appl. Phys. B 66, 747–753 (1998)

    Article  ADS  Google Scholar 

  81. M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer: Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances, IEEE J. Quantum Electron. 28, 2631 (1992)

    Article  ADS  Google Scholar 

  82. R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, L. Erman: Continuous-Wave Quasi-Phase-Matched Generation of 60mW at 465 nm by Single-Pass Frequency Doubling of a Laser Diode in Backswitch-Poled Lithium Niobate, Opt. Lett. 24, 1293 (1999)

    Article  ADS  Google Scholar 

  83. J.-P. Meyn, M. M. Fejer: Tunable Ultraviolet Radiation by Second Harmonic Generation in Periodically Poled Lithium Tantalate, Opt. Lett. 22, 1214 (1997)

    Article  ADS  Google Scholar 

  84. A. Arie, G. Roseman, V. Mahal, A. Skliar, M. Oron, M. Katz, D. Eger: Green and Ultraviolet Quasi-Phase-Matched Second Harmonic Generation in Bulk Periodically Poled KTiOPO4, Opt. Commun. 142, 265 (1997)

    Article  ADS  Google Scholar 

  85. J.-P. Meyn, M. E. Klein, D. Woll, R. Wallenstein, D. Rytz: Periodically Poled Potassium Niobate for Second-Harmonic Generation at 463 nm, Opt. Lett. 24, 1154 (1999)

    Article  ADS  Google Scholar 

  86. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, R. L. Byer: Continuous Wave Singly Resonant Optical Parametric Oscillator Based on Periodically Poled LiNbO3, Opt. Lett. 21, 713 (1996)

    Article  ADS  Google Scholar 

  87. M. E. Klein, D.-H. Lee, J.-P. Meyn, B. Beier, K.-J. Boller, R. Wallenstein: Diode-Pumped Continuous-Wave Widely Tunable Optical Parametric Oscillator Based on Periodically Poled LiTaO4, Opt. Lett. 23, 831–833 (1998)

    Article  ADS  Google Scholar 

  88. M. E. Klein, D.-H. Lee, J.-P. Meyn, K.-J. Boller, R. Wallenstein: Singly Resonant Continuous-Wave Optical Parametric Oscillator Pumped by a Diode Laser, Opt. Lett. 24, 1142 (1999)

    Article  ADS  Google Scholar 

  89. M. E. Klein, C. K. Laue, D.-H. Lee, K.-J. Boller, R. Wallenstein: Diode-Pumped Singly-Resonant CW Optical Parametric Oscillator with Wide Continuous Tuning of the Near-Infrared Idler Wave, Opt. Lett. 25, 490 (2000)

    Article  ADS  Google Scholar 

  90. A. Robertson, M. E. Klein, M.A. Tremont, K.-J. Boller, R. Wallenstein: 2.5 GHz Repetition Rate Singly Resonant Optical Parametric Oscillator Synchronously Pumped by a Mode-Locked Diode Oscillator Amplifier System, Opt. Lett. 25, in print (May issue, 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boller, KJ., Beier, B., Wallenstein, R. (2000). Properties and Frequency Conversion of High-Brightness Diode-Laser Systems. In: Diehl, R. (eds) High-Power Diode Lasers. Topics in Applied Physics, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47852-3_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-47852-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66693-6

  • Online ISBN: 978-3-540-47852-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics