Skip to main content

Some Afterthoughts on Hopfield Networks

  • Conference paper
  • First Online:
SOFSEM’99: Theory and Practice of Informatics (SOFSEM 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1725))

  • 424 Accesses

Abstract

In the present paper we investigate four relatively independent issues, which complete our knowledge regarding the computational aspects of popular Hopfield nets. In Section 2 of the paper, the computational equivalence of convergent asymmetric and Hopfield nets is shown with respect to network size. In Section 3, the convergence time of Hopfield nets is analyzed in terms of bit representations. In Section 4, a polynomial time approximate algorithm for the minimum energy problem is shown. In Section 5, the Turing universality of analog Hopfield nets is studied.

Research supported by GA ČR Grant No. 201/98/0717.

Research supported by Academy of Finland Grant No. 37115/96.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarts, E., Korst, J. Simulated Annealing and Boltzmann Machines. Wiley and Sons, 1989.

    Google Scholar 

  2. Balcá J.L., Gavaldàgelmann, H. T. Computational power of neural networks: A characterization in terms of Kolmogorov complexity. IEEE Transactions of Information Theory, 43, 1175–1183, 1997.

    Article  Google Scholar 

  3. Barahona, F. On the computational complexity of Ising spin glass models. Journal of Physics A, 15, 3241–3253, 1982.

    Article  MathSciNet  Google Scholar 

  4. Bertoni, A., Compadelli, P. On the approximability of the energy function. In Proceedings of the ICANN’rence, 1157–1160, Springer-Verlag, 1994.

    Google Scholar 

  5. Bertoni, A., Campadelli, P., Gangai, C., Posenato, R. Approximability of the ground state problem for certain Ising spin glasses. Journal of Complexity, 13, 323–339, 1997.

    Article  MathSciNet  Google Scholar 

  6. Bieche, I., Maynard, R., Rammal, R., Uhry, J. P. On the ground states of the frustration model of a spin glass by a matching method of graph theory. Journal of Physics A, 13, 2553–2576, 1980.

    Article  MathSciNet  Google Scholar 

  7. Farhat, N. H., Psaltis, D., Prata, A., Paek, E. Optical implementation of the Hopfield. Applied Optics, 24, 1469–1475, 1985.

    Article  Google Scholar 

  8. Floreén, P. Worst-case convergence times for Hopfield memories. IEEE Transactions on Neural Networks, 2, 533–535, 1991.

    Article  Google Scholar 

  9. Floreén, P., Orponen, P. Complexity issues in discrete Hop-field networks. Research Report A—1994-4, Department of Computer Science, University of Helsinki, 1994.

    Google Scholar 

  10. Goemans, M. X., Williamson, D. P. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42, 1115–1145, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  11. Goles, E., Martìnez, S. Exponential transient classes of symmetric neural networks for synchronous and sequential updating. Complex Systems, 3, 589–597, 1989.

    MATH  MathSciNet  Google Scholar 

  12. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. In Proceedings of the National Academy of Sciences, vol. 79, 2554–2558, 1982.

    Article  MathSciNet  Google Scholar 

  13. Hopfield, J. J. Neurons with graded response have collective computational properties like those of two-state neurons. In Proceedings of the National Academy of Sciences, vol. 81, 3088–3092, 1984.

    Article  Google Scholar 

  14. Hopfield, J. J., Tank, D. W. “Neural” computation of decisions in optimization problems. Biological Cybernetics, 52, 141–152, 1985.

    MATH  MathSciNet  Google Scholar 

  15. Horne, B. G., Hush, D. R. Bounds on the complexity of recurrent neural network implementations of finite state machines. Neural Networks, 9, 243–252, 1996.

    Article  Google Scholar 

  16. Indyk, P. Optimal simulation of automata by neural nets. In Proceedings of the 12th Annual Symposium on Theoretical Aspects of Computer Science, vol. 900 of LNCS, 337–348, Springer-Verlag, 1995.

    Google Scholar 

  17. Koiran, P. Dynamics of discrete time, continuous state Hopfield networks. Neural Computation, 6, 459–468, 1994.

    Article  Google Scholar 

  18. Komlós, P., Paturi, R. Convergence results in an associative memory model. Neural Networks, 1, 239–250, 1988.

    Article  Google Scholar 

  19. Maass, W., Orponen, P. On the effect of analog noise in discrete-time analog computations. Neural Computation, 10, 1071–1095, 1998.

    Article  Google Scholar 

  20. Mahajan, S., Ramesh, H. Derandomizing semidefinite programming based approximation algorithms. In Proceedings of the 36th Annual Symposium on Foundations of Computer Science., 162–163, IEEE, Los Alamitos, California, 1995.

    Google Scholar 

  21. Orponen, P. The computational power of discrete Hop eld nets with hidden units. Neural Computation, 8, 403–415, 1996.

    Article  Google Scholar 

  22. Parberry, I. A primer on the complexity theory of neural networks. In Formal Techniques in Artificial Intelligence: A Sourcebook, editor R. B. Banerji, 217–268, Elsevier, North-Holland, 1990.

    Google Scholar 

  23. Poljak, S., Sůra, M. On periodical behaviour in societies with symmetric influences. Combinatorica, 3, 119–121, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  24. Rojas, R. Neural Networks: A Systematic Introduction. Springer Verlag, 1996.

    Google Scholar 

  25. Siegelmann, H. T., Sontag, E. D. Analog computation via neural networks. Theoretical Computer Science, 131, 331–360, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  26. Siegelmann, H. T., Sontag, E. D. Computational power of neural networks. Journal of Computer System Science, 50, 132–150, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  27. Šìma, J.Hopfield languages. In Proceedings of the SOFSEM Seminar on Current Trends in Theory and Practice of Informatics, LNCS 1012, 461–468, Springer-Verlag, 1995.

    Google Scholar 

  28. Šìma, J. Analog stable simulation of discrete neural networks. Neural Network World, 7, 679–686, 1997.

    Google Scholar 

  29. Šìma, J., Orponen, P. A continuous-time Hop eld net simulation of discrete neural networks. Technical report V-773, ICS ASCR, Prague, January, 1999.

    Google Scholar 

  30. Šìma, J., Orponen, P., Antti-Poika, T. Some afterthoughts on Hopfield networks. Technical report V-781, ICS ASCR, Prague, May, 1999.

    Google Scholar 

  31. Šìma, J., Wiedermann, J. Theory of neuromata.Journal of the ACM, 45,155–178, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  32. Sheu, B., Lee, B., Chang, C.-F. Hardware annealing for fast-retrieval of optimal solutions in Hopfield neural networks. In Proceedings of the IEEE International Joint Conference on Neural Networks, Seattle, Vol. II, 327–332, 1991.

    Google Scholar 

  33. Wegener, I. The Complexity of Boolean Functions. Wiley/Teubner, 1987.

    Google Scholar 

  34. Wiedermann, J. Complexity issues in discrete neurocomputing. Neural Network World, 4, 99–119, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Šíma, J., Orponen, P., Antti­Poika, T. (1999). Some Afterthoughts on Hopfield Networks. In: Pavelka, J., Tel, G., Bartošek, M. (eds) SOFSEM’99: Theory and Practice of Informatics. SOFSEM 1999. Lecture Notes in Computer Science, vol 1725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47849-3_34

Download citation

  • DOI: https://doi.org/10.1007/3-540-47849-3_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66694-3

  • Online ISBN: 978-3-540-47849-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics