Skip to main content

Quantum Challenges

  • Conference paper
  • First Online:
SOFSEM’99: Theory and Practice of Informatics (SOFSEM 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1725))

Abstract

Quantum information processing research has brought deep insights into the quantum potentials of Nature for computing, revealed new information processing primitives, principles, concepts, methods and also brought some spectacular results. On the other side, the problems connected with the design of powerful quantum processors are still seen as immense.

The aim of the talk is to present and to analyse the current situation in quantum information processing and, especially, to point out main quantum challenges that need to be attacked in order to make a further progress in this fascinating and promising area.

Paper has been written during author stay at the University of Nice,Sophia Antipolis,within the PAST program of the GAČR grant No.201/98/0369 and of the grant CEZ:J07/98:143300001 is also to appreciate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Bacon, D. A. Lidar, and K. B. Whaley. Robustness of decoherence-free subspaces for quantum computation. Technical report, quant-ph/9902041, 1999.

    Google Scholar 

  2. Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. Di Vincenzo, Norman Margolus, Peter W. Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. Elementary gates of quantum computation. Physical Review A, 52(5):3457–3467, 1995.

    Article  Google Scholar 

  3. Charles H. Bennett and Peter W. Shor. Quantum information theory. IEEE Transactions on Information Theory, 44:2724–2742, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  4. Charles H. Bennett, David P. DiVincenzo, Christopher A. Fuchs, Tal Moric, Eric M. Rains, Peter W. Shor, and John A. Smolin. Quantifying non-locality without entanglement. Technical report, quant-ph/9804053, 1998.

    Google Scholar 

  5. Dan Boneh and Richard J. Lipton. Quantum cryptoanalysis of hidden linear func-tions. In Advances in Cryptology, Proceedings of CRYPTO’ 95, pages 424–437, 1995.

    Google Scholar 

  6. P. Oscar Boykin, Tal Mor, Matthew Pulver, Vwani Roychowdhury, and Farrokh Vatan. On universal and fault-tolerant quantum computing. Technical report, quant-ph/9900054, 1999.

    Google Scholar 

  7. Gilles Brassard, Richard Cleve, and Alain Tapp. The cost of exactly simulating quantum entanglement with classical communication. Technical report, quant-ph/9901035, 1999.

    Google Scholar 

  8. Shamuel L. Braunstein and H. Je Kimble. Exprimental quantum teleportation. Nature, 394:840–841, 1998.

    Article  Google Scholar 

  9. Dagmar Bruβ.Entanglement splitting of pure bipartite quantum states. Technical report, quant-ph/9902023, 1999.

    Google Scholar 

  10. Vladimìr Bu_zek and Mark Hillery. Quantum copying: beyond the no-clonning theorem. Physical Review A, 54:1844–1852, 1996.

    Article  MathSciNet  Google Scholar 

  11. Vladimìr Bužek, Samuel L. Braunstein, Mark Hillery, and Dagmar Bruβ. Quantum copying: A network. Physical Review A, 56(5):3446–3452, 1997.

    Article  Google Scholar 

  12. Guiseppe Castagnoli, Dalida Monti, and Alexander Sergienko. Symmetry, reversibility, and eficiency of quantum computation. Technical report, quant ph/9908015, 1999.

    Google Scholar 

  13. Andrew M. Childs, John Preskill, and Joseph Renes. Quantum information and precission measurement. Technical report, quant-ph/9904021, 1999.

    Google Scholar 

  14. Richard Cleve. An introduction to quantum complexity theory. Technical report, quant-ph/9906111, 1999.

    Google Scholar 

  15. Valerie Coman, Joydep Kundu, and William K. Wooters. Distributed entanglement. Technical report, quant-ph/9907047, 1999.

    Google Scholar 

  16. David Deutsch and Patrick Hayden. Information flow in entangled quantum states. Technical report, quant-ph/9906007, 1999.

    Google Scholar 

  17. David P. DiVincenzo and D. Loss. Quantum computers and quantum coherence. Technical report, quant-ph/9901137, 1999.

    Google Scholar 

  18. A. Furusawa, J. Sorenson, Shamuel L. Braunstein, Christopher A. Fuchs, H. Jeff Kimble, and E. S. Polzik. Science, 282:706–707, 1998.

    Article  Google Scholar 

  19. Lior Goldenberg, Lev Vaidman, and Stephen Wiesner. Quantum gambling. Physical Review Letters, 82:3356–3359, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  20. Daniel Gottesman and Isaac L. Chuang. Quantum teleportation is a universal computational primitive. Technical report, quant-ph/9908010, 1999.

    Google Scholar 

  21. Jozef Gruska. Quantum computing. McGraw-Hill, 1999. URL: http://www.mcgraw-hill.co.uk/gruska.

  22. Jozef Gruska. Quantum challenges in descriptional complexity. In Proceedings of the International Workshop on Descriptional Complexity, pages 23–38, 1999.

    Google Scholar 

  23. Lucien Hardy. Disentangling nonlocality and teleportation. Technical report, quant-ph/9906123, 1999.

    Google Scholar 

  24. O. Hay and Asher Peres. Quantum and classical description of a measuring apparatus. Technical report, quant-ph/9712044, 1997.

    Google Scholar 

  25. Michal Horodecki, Pawel Horodecki, and Ryszard Horodecki. Separability of mixed states: necessary and suficient conditions. Physics Letters A, 223:1–8, 1998. quant ph/9605038.

    Article  MathSciNet  Google Scholar 

  26. Michal Horodecki, Pawel Horodecki, and Ryszard Horodecki. Limits for entanglement measures. Technical report, quant-ph/9908065, 1999.

    Google Scholar 

  27. Pawel Horodecki, Ryszard Horodecki, and Michal Horodecki. Entanglement and thermodynamical analogies. Acta Physica Slovaca, 48(3):141–156, 1998.

    MathSciNet  Google Scholar 

  28. Michal Horodecki, Pawel Horodecki, and Ryszard Horodecki. Mixed-state entanglement and distillation: is there a “bound” entanglement in nature? Technical report, quant-ph/9801069, 1998.

    Google Scholar 

  29. B. E. Kane. A Si-based nuclear spin quantum computer. Nature, 393:133-13, 1998.

    Article  Google Scholar 

  30. Peter L. Knight, A. Beige, S. Bose, S. F. Huelga, M. B. Plenio, and V. Vedral. Physics Review A, 59:2468–, 1999.

    Article  Google Scholar 

  31. Emanuel Knill, Raymond Laflamme, R. Martinez, and C.-H. Tseng. A cat-state benchmark on a seven bit quantum computer. Technical report, quant-ph/9908051, 1999.

    Google Scholar 

  32. Emanuel Knill, Raymond Laflamme, and Lorenza Viola. Theory of quantum error correction for general noise. Technical report, quant-ph/9908066, 1999.

    Google Scholar 

  33. D. A. Lidar, D. Bacon, and K. B. Whaley. Concatenating decoherence free subspaces with quantum error correcting codes. Technical report, quant-ph/9809081, 1998.

    Google Scholar 

  34. Seth Lloyd. Ultimate physical limits to computation. Technical report, quant-ph /9908043, 1999.

    Google Scholar 

  35. Hoi-Kwong Lo. A simple proof of the unconditional security of quantum key distribution. Technical report, quant-ph/9904091, 1999.

    Google Scholar 

  36. Hoi-Kwong Lo and H. F. Chau. Unconditional security of quantum key distribution over arbitrarily long distance. Science, 283:2050–2056, 1999.

    Article  Google Scholar 

  37. Hoi-Kwong Lo and Sandu Popescu. The classical communication costs of entanglement manipulation. is entaglement an inter-convertible resource? Technical report, quant-ph/9902045, 1999.

    Google Scholar 

  38. Dominic C. Mayers and Andrew C.-C. Yao Unconditional security in quantum cryptography. Technical report, quant-ph/9802025, 1998.

    Google Scholar 

  39. Graeme Mitchison and Richard Jozsa. Counterfactual computation. Technical report, quant-ph/9906026, 1999.

    Google Scholar 

  40. Michael Nielsen Conditions for a class of entangled transformatios. Physical Review Letters, 83(2):436–439, 1998.

    Article  Google Scholar 

  41. Arun Kumar Pati. Minimum cbits required to transmit a qubit. Technical report, quant-ph/9907022, 1999.

    Google Scholar 

  42. Asher Peres. Separability criterion for density matrices. Physical Review Letters, 77:1413–1415, 1996a.

    Article  MATH  MathSciNet  Google Scholar 

  43. John Preskill. Quantum information and physics: some future directions. Technical report, quant-ph/9904022, 1999.

    Google Scholar 

  44. R. Raz. Exponential separation of quantum and classical communication complexity. In Proceedings of the 31th ACM STOC, pages 358–367j, 1999.

    Google Scholar 

  45. John Reif. Alternative computational models: a comparison of biomolecular and quantum computing. In Proceedings of 18th International Conference on Foundations of Software technology and Theoretical Computer Science, pages 102–121, 1998. For an extended version see http://www.cs.duke/reif/paper/altcomp.ps.

  46. Lev Vaidman. Teleportation: dream or reality? Technical report, quant-ph /9810089, 1998.

    Google Scholar 

  47. Paul Vitanyi. Two approaches to the quantitative de nition of information in an individual pure quantum state. Technical report, quant-ph/9907035, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gruska, J. (1999). Quantum Challenges. In: Pavelka, J., Tel, G., Bartošek, M. (eds) SOFSEM’99: Theory and Practice of Informatics. SOFSEM 1999. Lecture Notes in Computer Science, vol 1725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47849-3_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-47849-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66694-3

  • Online ISBN: 978-3-540-47849-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics