Advertisement

Performance Evaluation of the Extensions for Control Message Retransmissions in RSVP

  • Michael Menth
  • Rüdiger Martin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2334)

Abstract

Quality of Service (QoS) for real-time transmission can be achieved by resource reservation in the routers along the path. In recent years, several protocols and extensions to them have been designed for signaling resource reservation in IP networks. This work reviews various protocols that exhibit different signaling concepts. Then, we study the impact of control message retransmissions (CMR) and the control option on the reservation establishment delay (RED) and the reservation teardown delay (RTD). Numerical results quantify the resulting performance gain in different networking scenarios.

Keywords

Transmission Control Protocol Control Message Resource Reservation Packet Loss Probability Reservation Request 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Chiueh, T., Neogi, A., Stirpe, P.: Performance Analysis of an RSVP-Capable Router. In: 4th Real-Time Technology and Applications Symposium. (1998)Google Scholar
  2. 2.
    Karsten, M., Schmitt, J., Steinmetz, R.: Implementation and Evaluation of the KOM RSVP Engine. In: Infocom, IEEE (2001) 1290–1299Google Scholar
  3. 3.
    Fehér, G., Németh, K., Czslényi, I.: Performance Evaluation Framework for IP Resource Reservation Signalling. In: 8 th IFIP Workshop of Performance Modelling and Evaluation of ATM & IP Networks. (2000)Google Scholar
  4. 4.
    Pan, P., Schulzrinne, H.: Processing Overhead Studies in Resource Reservation Protocols. In: 17 th International Teletraffic Congress. (2001)Google Scholar
  5. 5.
    Eramo, V., Mocci, U., Fratini, M., Listanti, M.: Reliability Evaluation of RSVP. In: 8 th International Telecommunication Network Planning Symposium (Networks 98). (1998)Google Scholar
  6. 6.
    Berger, L., Gan, D.H., Swallow, G., Pan, P., Tommasi, F., Molendini, S.: RFC2961: RSVP Refresh Overhead Reduction Extensions. http://www.ietf.org/rfc/rfc2961.txt (2001)
  7. 7.
    Schulzrinne, H., Rosenberg, J.: Internet Telephony: Architecture and Protocols-an IETF Perspective. Computer Networks 31 (1999) 237–255CrossRefGoogle Scholar
  8. 8.
    Braden, B., et al.: RFC2205: Resource ReSerVation Protocol (RSVP)-Version 1 Functional Specification. ftp://ftp.isi.edu/in-notes/rfc2205.txt (1997)
  9. 9.
    Wroclawski, J.: RFC2210: The Use of RSVP with IETF Integrated Services. ftp://ftp.isi.edu/in-notes/rfc2210.txt (1997)
  10. 10.
    Pan, P., Schulzrinne, H.: Staged Refresh Timers for RSVP. In: 2 nd Global Internet Conference. (1997)Google Scholar
  11. 11.
    Baker, F., Iturralde, C., Le Faucheur, F., Davie, B.: Rfc3175: Aggregation of RSVP for IPv4 and IPv6 Reservations. http://www.ietf.org/rfc/rfc3175.txt (2001)
  12. 12.
    Rosen, E.C., Viswanathan, A., Callon, R.: RFC3031: Multiprotocol Label Switching Architecture. http://www.ietf.org/rfc/rfc3031.txt (2001)
  13. 13.
    Menth, M.: A Scalable Protocol Architecture for End-to-End Signaling and Resource Reservation in IP Networks. In: 17 th International Teletraffic Congress. (2001) 211–222Google Scholar
  14. 14.
    Menth, M., Hauck, N.: A Graph-Theoretical Concept for LSP Hierarchies. Technical Report, No. 287, University of Wurzburg, Institute of Computer Science (2001)Google Scholar
  15. 15.
    Fehér, G., Németh, K., Maliosz, M., Czslényi, I., Bergkvist, J., Ahlard, D., Engborg, T.: Boomerang-A Simple Protocol for Resource Reservation in IP Networks. In: IEEE Workshop on QoS Support for Real-Time Internet Applications, Vancouver, Canada (1999)Google Scholar
  16. 16.
    Pan, P., Schulzrinne, H.: YESSIR: A Simple Reservation Mechanism for the Internet. Computer Communication Review 29 (1999)Google Scholar
  17. 17.
    Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RFC1889: RTP-A Transport Protocol for Real-Time Applications. ftp://ftp.isi.edu/in-notes/rfc1889.txt (1996)
  18. 18.
    Pan, P., Schulzrinne, H.: BGRP: A Tree-Based Aggregation Protocol for Inter-domain Reservations. Journal of Communications and Networks 2 (2000) 157–167CrossRefGoogle Scholar
  19. 19.
    Breslau, L., Knightly, E.W., Shenker, S., Zhang, H.: Endpoint Admission Control: Architectural Issues and Performance. In: ACM SIGCOMM. (2000)Google Scholar
  20. 20.
    Breslau, L., Jamin, S., Shenker, S.: Comments on the Performance of Measurement-Based Admission Control Algorithms. In: Infocom. (2000) 1233–1242Google Scholar
  21. 21.
    Más, I., Karlsson, G.: PBAC: Probe-Based Admission Control. In: 2 nd International Workshop on Quality of future Internet Services (QofIS2001). (2001)Google Scholar
  22. 22.
    Stoica, I., Zhang, H.: Providing Guaranteed Services Without Per Flow Management. Computer Communication Review 29 (1999)Google Scholar
  23. 23.
    Almesberger, W., Ferrari, T., Le Boudec, J.Y.: SRP: a Scalable Resource Reservation for the Internet. In: IFIP 6 th International Workshop on Quality of Service (IWQoS’98). (1998)Google Scholar
  24. 24.
    Eriksson, A., Ghermann, C.: Robust and Secure Light-weight Resource Reservation of Unicast IP Traffic. In: IFIP 6 th International Workshop on Quality of Service (IWQoS’98). (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Michael Menth
    • 1
  • Rüdiger Martin
    • 1
  1. 1.Department of Distributed Systems, Institute of Computer ScienceUniversity of WürzburgGermany

Personalised recommendations