Structure and dynamics of spherical polymer brushes in a homopolymer matrix

  • Yongming Chen
  • Kerstin Gohr
  • Wolfgang SchaertlEmail author
  • Manfred Schmidt
  • Lee Yezek
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 121)


This article discusses the dynamical properties of homogeneous colloid—polymer blends consisting of hairy nanospheres and linear polymer chains, respectively. Two different model systems of hairy particles have been prepared: a system with comparatively short hairs off molecular weight below the entanglement regime, polyorganosiloxane microgels grafted with polystyrene hairs of molecular weight 13,000 gmol−1, embedded in polystyrene chains with molecular weight varying from 600 to 4,000 gmol−1; a system with comparatively long hairs of molecular weight above the entanglement regime, kinetically frozen copolymer micelles with a polystyrene core and polyisoprene corona chains of molecular weight 50,000 gmol−1, embedded in homopolyisoprene chains with molecular weight from 4,000 to 50,000 gmol−1. The effect of the particle topology, i.e. the molecular weight of the polymer brush hairs with respect to the homopolymer chains, on interparticle interactions has been investigated by dynamic mechanical measurements. The effective volume swelling ratio and particle softness as estimated from the dependence of the zero-shear viscosity of the blends with respect to the hard-sphere reference system are discussed for both systems.

Key words

Spherical brush Soft colloids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asakura S, Oosawa F (1954) J Chem Phys 22:1255Google Scholar
  2. 2.
    Vrij A (1976) Pure Appl Chem 48:471CrossRefGoogle Scholar
  3. 3.
    Lindenblatt G, Schärtl W, Schmidt M (2000) Macromolecules 33:9340CrossRefGoogle Scholar
  4. 4.
    Leibler L, Pincus PA (1984) Macromolecules 17:2922CrossRefGoogle Scholar
  5. 5.
    Watanabe H (1997) Acta Polym 48:215CrossRefGoogle Scholar
  6. 6.
    Gohr K, Schärtl W (2000) Macromolecules 33:2129CrossRefGoogle Scholar
  7. 7.
    Pusey PN (1990) In: Li D, Levesque D, Hansen JP, Zinn-Justin J (eds) Les houches sessions. Elsevier, Amsterdam, pp, and references thereinGoogle Scholar
  8. 8.
    Schärtl W (1999) Macromol Chem Phys 200:481CrossRefGoogle Scholar
  9. 9.
    Gohr K, Pakula T, Tsutsumi K, Schärtl W (1999) Macromolecules 32:7156CrossRefGoogle Scholar
  10. 10.
    Matyjaszewski K, et al (1999) Macromolecules 32:8716CrossRefGoogle Scholar
  11. 11.
    Perruchot C, et al (2001) Langmuir 17:4479CrossRefGoogle Scholar
  12. 12.
    Baumann F, Schmidt M, Deubzer B, Geck M, Dauth J (1994) Macromolecules 27:6102CrossRefGoogle Scholar
  13. 13.
    Baumann F, Deubzer B, Geck M, Dauth J, Schmidt M (1997) Macromolecules 30:7568CrossRefGoogle Scholar
  14. 14.
    Ferry DJ (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New YorkGoogle Scholar
  15. 15.
    Doolittle AK (1951) J Appl Phys 22:1471CrossRefGoogle Scholar
  16. 16.
    Woodcock LV, Angell CA (1981) Phys Rev Lett 47:1129CrossRefGoogle Scholar
  17. 17.
    Schärtl W, Sillescu H (1994) J Stat Phys 74:687CrossRefGoogle Scholar
  18. 18.
    Graf C, Schärtl W, Maskos M, Schmidt M (2000) J Chem Phys 112:3031CrossRefGoogle Scholar
  19. 19.
    Schärtl W, Sillescu H (1994) J Stat Phys 77:1007CrossRefGoogle Scholar
  20. 20.
    Pakula T (1991) J Chem Phys 94:2104CrossRefGoogle Scholar
  21. 21.
    Watanabe H, Sato T, Osaki K, Hamersky MW, Chapman BR, Lodge TP (1998) Macromolecules 31:3740CrossRefGoogle Scholar
  22. 22.
    Lindenblatt G, Schärtl W, Pakula T, Schmidt M (2001) Macromolecules 34:1730CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • Yongming Chen
    • 1
  • Kerstin Gohr
    • 1
  • Wolfgang Schaertl
    • 1
    Email author
  • Manfred Schmidt
    • 1
  • Lee Yezek
    • 1
  1. 1.Institut für Physikalische ChemieMainzGermany

Personalised recommendations