Skip to main content

Solvatochromism in organized assemblies: effects of the sphere-to-rod micellar transition

  • Conference paper
  • First Online:

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 121))

Abstract

The solvatochromic behavior of 2,6-dichloro-4-(2,4,6-tri-phenyl-1-pyridinium-1-yl) phenolate (WB), 1-methyl-8-oxyquinolinium betaine (QB), and sodium 1-methyl-8-oxyquinolinium betaine-5-sulfo-nate (QBS) has been studied in the presence of spherical, and rod-shaped micelles of 1-hexadecyltrim-ethylammonium bromide (CTABr) and 1-hexadecylpyridinium bromide. Rod-shaped aggregates were obtained either by increasing the surfactant concentration or by adding NaBr, or a mixture of NaBr plus 1-decanol to the surfactant solution. The microscopic polarity of water at the solubilization site of the micelle-bound probe, E micT , has been calculated from the position of its intramolecular charge-transfer band in the UV—vis region. The calculated polarities depend on the structure and charge of the probe, the additive present, but not on the surfactant headgroup (trimethylammonium, and pyridinium ion, respectively). Hydrophobic WB is solubilized in a relatively nonpolar microenvironment; its E micT is only slightly dependent on the additive present. Anionic QBS behaves as a surfactant counterion, so it essentially reports the polarity changes that occur at the outer layer of the interfacial region. QB is sensitive to the presence of additives because they displace it to the outer part of the interfacial region. Our conclusions have been confirmed by measuring 1H NMR chemical shifts of the discrete hydrogen atoms of CTABr and QB. The “effective” water concentration at the probe solubilization site has been calculated from E micT and solvatochromic data in bulk aqueous solvents, 1-propanol and 1,4-dioxane. Both solvent mixtures gave consistent concentrations of the effective water concentration at the probe solubilization site, except where preferential solvation of the probe (by one component of the binary mixture) is sizeable. The relevance of our data to micelle-mediated reactions is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Evans DE, Wennerström, H (1999) The colloidal domain: where physics, chemistry, biology, and technology meet, 2nd edn. Willey-VCH, New York, p 198

    Google Scholar 

  2. Bunton CA, Savelli G (1986) Adv Phys Org Chem 22:213

    Article  CAS  Google Scholar 

  3. Bunton CA, Nome F, Quina FH, Romsted LS (1991) Acc Chem Res 24:357

    Article  CAS  Google Scholar 

  4. Bunton CA (1997) J Mol Liq 72:231, and references therein

    Article  CAS  Google Scholar 

  5. Hiemenz PC, Rajagopalan, R (1997) Principles of colloid and surface chemistry, 3rd edn. Dekker, New York, p 355

    Google Scholar 

  6. Tascioglu S (1996) Tetrahedron 34:11113

    Article  Google Scholar 

  7. El Seoud OA (1997) J Mol Liq 72:85, and references therein

    Article  CAS  Google Scholar 

  8. Chaudhori A, Loughlin JA, Romsted LS, Yao, J (1993) J Am Chem Soc 115:8351

    Article  Google Scholar 

  9. Soldi V, Keiper J, Romsted LS, Cuccovia IM, Chaimovich H (2000) Langmuir 16:59

    Article  CAS  Google Scholar 

  10. Reichardt C (1988) Solvents and solvent effects in organic chemistry. VCH, New York, p 285, and references therein

    Google Scholar 

  11. Reichardt C (1992) Chem Soc Rev 147

    Google Scholar 

  12. Reichardt C (1994) Chem Rev 94:2319

    Article  CAS  Google Scholar 

  13. Novaki LP, El Seoud OA (1999) Phys Chem Chem Phys 1:1957

    Article  CAS  Google Scholar 

  14. Novaki LP, El Seoud OA (2000) Langmuir 16:35

    Article  CAS  Google Scholar 

  15. Tada EB, Novaki LP, El Seoud OA (2001) Langmuir 17:652

    Article  CAS  Google Scholar 

  16. Lindblom G, Lindman B, Mandell L (1973) J Colloid Interface Sci 42:400

    Article  CAS  Google Scholar 

  17. Hoffmann H, Platz G, Rehage H, Schorr W (1981) Ber Bunsenges Phys Chem 85:877

    CAS  Google Scholar 

  18. Imae T, Kamiya R, Ikeda S (1985) J Colloid Interface Sci 108:215

    Article  CAS  Google Scholar 

  19. Rehage H, Hoffmann H (1988) J Phys Chem92:4712

    Article  CAS  Google Scholar 

  20. Imae T, Ikeda S (1986) J Phys Chem 90:5216

    Article  CAS  Google Scholar 

  21. Imae T, Abe A, Ikeda S (1988) J Phys Chem 92:1548

    Article  CAS  Google Scholar 

  22. Shikata T, Hirata H, Kotaka T (1987) Langmuir 3:1081

    Article  CAS  Google Scholar 

  23. Shikata T, Hirata H, Kotaka T (1988) Langmuir 4:354

    Article  CAS  Google Scholar 

  24. Shikata T, Hirata H, Kotaka T (1989) Langmuir 5:398

    Article  CAS  Google Scholar 

  25. Magid LJ, Han Z, Warr GG, Cassidy MA, Butler PD, Hamilton WA (1997) J Phys Chem B 101:7919

    Article  CAS  Google Scholar 

  26. Hassan PA, Yakhmi JV (2000) Langmuir 16:7187

    Article  CAS  Google Scholar 

  27. Almgren M, Swarup S (1983) J Colloid Interface Sci 91:256

    Article  CAS  Google Scholar 

  28. Backlund S, Bakken J, Blokhus AM, Høiland H, Vikholm I (1986) Acta Chem Scand A 40:241

    Article  Google Scholar 

  29. Gomati R, Appell J, Bassereau P, Marignan J, Porte G (1987) J Phys Chem 91:6203

    Article  CAS  Google Scholar 

  30. Blokhus AM, Høiland H, Gilje E, Backlund S (1988) J Colloid Interface Sci 124:125

    Article  CAS  Google Scholar 

  31. Reekmans S, Luo H, Van de Auweraer M, De Schryver FC (1990) Langmuir 6:628

    Article  CAS  Google Scholar 

  32. Valiente M, Thunig C, Munkert U, Hoffmann HJ (1993) J Colloid Interface Sci 160:39

    Article  CAS  Google Scholar 

  33. Forland GM, Samseth J, Høiland H, Mortensen KJ (1994) J Colloid Interface Sci 164:163

    Article  Google Scholar 

  34. Kabir-ud-Din, Kumar, S, Kirti, Goyal, PS (1996) Langmuir 12:1490

    Article  CAS  Google Scholar 

  35. Prasad CD, Singh HN (1991) Colloids Surf59:27

    Article  CAS  Google Scholar 

  36. Prasad CD, Singh HN, Goyal, PS, Rao KS (1993) J Colloid Interface Sci 155:415

    Article  CAS  Google Scholar 

  37. Kabir-ud-Din, Kumar S, Aswal VK, Goyal PS (1996) J Chem Soc Faraday Trans 92:2413

    Article  CAS  Google Scholar 

  38. Kabir-ud-Din, Bansal D, Kumar S (1997) Langmuir 13:5071

    Article  CAS  Google Scholar 

  39. Yue Y, Wang J, Dai M (2000) Langmuir 16:6114

    Article  CAS  Google Scholar 

  40. Chaiko MA, Nagrajan R, Ruckenstein E (1984) J Colloid Interface Sci 99:168

    Article  CAS  Google Scholar 

  41. Lianos P, Viriot ML, Zana R (1984) J Phys Chem 88:1098

    Article  CAS  Google Scholar 

  42. Gradzielski M, Hoffmann H, Langevin D (1995) J Phys Chem 99:2612

    Google Scholar 

  43. Kumar S, Bansal D, Kabir-Ud-Din (1999) Langmuir 15:4960

    Article  CAS  Google Scholar 

  44. Kumar S, Naqvi AZ, Kabir-ud-Din (2001) Langmuir 17:4787

    Article  CAS  Google Scholar 

  45. Hoffmann H, Ebert G (1988) Angew Chem Int Ed Engl 27:902

    Article  Google Scholar 

  46. Makhloufi R, Cressely R (1992) Colloid Polym Sci 270:1035

    Article  CAS  Google Scholar 

  47. Derome A (1987) Modern NMR techniques for chemistry research. Pergamon, Oxford, p 31

    Google Scholar 

  48. Novaki LP, El Seoud OA (1996) Ber Bunsenges Phys Chem 100:648

    CAS  Google Scholar 

  49. Novaki LP, El Seoud OA (1997) Ber Bunsenges Phys Chem 101:105

    CAS  Google Scholar 

  50. Novaki LP, El Seoud OA (1997) Ber Bunsenges Phys Chem 101:902

    CAS  Google Scholar 

  51. Tada EB, Novaki LP, El Seoud OA (2000) J Phys Org Chem 13:679

    Article  CAS  Google Scholar 

  52. Dawber JG, Ward J, Williams RA (1988) J Chem Soc Faraday Trans 184:713

    Google Scholar 

  53. Buurma NJ, Herranz AM, Engberts JBFN (1999) J Chem Soc Perkin Trans 2:113

    Google Scholar 

  54. Possidonio S, Siviero F, El Seoud OA (1999) J Phys Org Chem 12:235

    Article  Google Scholar 

  55. El Seoud OA, Ruasse MF, Possidonio S (2001) J Phys Org Chem 14:526

    Article  CAS  Google Scholar 

  56. Israelachivili JN, Mitchell DJ, Ninham BW (1976) J Chem Soc Faraday Trans 272:1525

    Google Scholar 

  57. Mitchell DJ, Ninham BW (1981) J Chem Soc Faraday Trans 277:601

    Google Scholar 

  58. Rosen MJ (1989) Surfactants and interfacial phenomena. Wiley, New York, p 397

    Google Scholar 

  59. Zana R (1995) Adv Colloid Interface Sci 57:1

    Article  CAS  Google Scholar 

  60. Davies DM, Gillitt ND, Paradis PM (1996) J Chem Soc Perkin Trans 2:659

    Google Scholar 

  61. Zana R (1980) J Colloid Interface Sci 78:330

    Article  CAS  Google Scholar 

  62. Allmann, RZ (1969) Kristallografiya 128:115

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar A. El Seoud .

Editor information

G. Lagaly

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag

About this paper

Cite this paper

Tada, E.B., El Seoud, O.A. (2002). Solvatochromism in organized assemblies: effects of the sphere-to-rod micellar transition. In: Lagaly, G. (eds) Molecular Organisation on Interfaces. Progress in Colloid and Polymer Science, vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47822-1_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-47822-1_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43637-9

  • Online ISBN: 978-3-540-47822-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics