Solvatochromism in organized assemblies: effects of the sphere-to-rod micellar transition

  • Erika B. Tada
  • Omar A. El SeoudEmail author
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 121)


The solvatochromic behavior of 2,6-dichloro-4-(2,4,6-tri-phenyl-1-pyridinium-1-yl) phenolate (WB), 1-methyl-8-oxyquinolinium betaine (QB), and sodium 1-methyl-8-oxyquinolinium betaine-5-sulfo-nate (QBS) has been studied in the presence of spherical, and rod-shaped micelles of 1-hexadecyltrim-ethylammonium bromide (CTABr) and 1-hexadecylpyridinium bromide. Rod-shaped aggregates were obtained either by increasing the surfactant concentration or by adding NaBr, or a mixture of NaBr plus 1-decanol to the surfactant solution. The microscopic polarity of water at the solubilization site of the micelle-bound probe, E T mic , has been calculated from the position of its intramolecular charge-transfer band in the UV—vis region. The calculated polarities depend on the structure and charge of the probe, the additive present, but not on the surfactant headgroup (trimethylammonium, and pyridinium ion, respectively). Hydrophobic WB is solubilized in a relatively nonpolar microenvironment; its E T mic is only slightly dependent on the additive present. Anionic QBS behaves as a surfactant counterion, so it essentially reports the polarity changes that occur at the outer layer of the interfacial region. QB is sensitive to the presence of additives because they displace it to the outer part of the interfacial region. Our conclusions have been confirmed by measuring 1H NMR chemical shifts of the discrete hydrogen atoms of CTABr and QB. The “effective” water concentration at the probe solubilization site has been calculated from E T mic and solvatochromic data in bulk aqueous solvents, 1-propanol and 1,4-dioxane. Both solvent mixtures gave consistent concentrations of the effective water concentration at the probe solubilization site, except where preferential solvation of the probe (by one component of the binary mixture) is sizeable. The relevance of our data to micelle-mediated reactions is discussed.

Key words

Solvatochromism Cationic micelles Interfacial water Polarity of 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Evans DE, Wennerström, H (1999) The colloidal domain: where physics, chemistry, biology, and technology meet, 2nd edn. Willey-VCH, New York, p 198Google Scholar
  2. 2.(a)
    Bunton CA, Savelli G (1986) Adv Phys Org Chem 22:213CrossRefGoogle Scholar
  3. 2.(b)
    Bunton CA, Nome F, Quina FH, Romsted LS (1991) Acc Chem Res 24:357CrossRefGoogle Scholar
  4. 2.(c)
    Bunton CA (1997) J Mol Liq 72:231, and references thereinCrossRefGoogle Scholar
  5. 3.
    Hiemenz PC, Rajagopalan, R (1997) Principles of colloid and surface chemistry, 3rd edn. Dekker, New York, p 355Google Scholar
  6. 4.
    Tascioglu S (1996) Tetrahedron 34:11113CrossRefGoogle Scholar
  7. 5.
    El Seoud OA (1997) J Mol Liq 72:85, and references thereinCrossRefGoogle Scholar
  8. 6.
    Chaudhori A, Loughlin JA, Romsted LS, Yao, J (1993) J Am Chem Soc 115:8351CrossRefGoogle Scholar
  9. 7.
    Soldi V, Keiper J, Romsted LS, Cuccovia IM, Chaimovich H (2000) Langmuir 16:59CrossRefGoogle Scholar
  10. 8.(a)
    Reichardt C (1988) Solvents and solvent effects in organic chemistry. VCH, New York, p 285, and references thereinGoogle Scholar
  11. 8.(b)
    Reichardt C (1992) Chem Soc Rev 147Google Scholar
  12. 8.(c)
    Reichardt C (1994) Chem Rev 94:2319CrossRefGoogle Scholar
  13. 9.
    Novaki LP, El Seoud OA (1999) Phys Chem Chem Phys 1:1957CrossRefGoogle Scholar
  14. 10.
    Novaki LP, El Seoud OA (2000) Langmuir 16:35CrossRefGoogle Scholar
  15. 11.
    Tada EB, Novaki LP, El Seoud OA (2001) Langmuir 17:652CrossRefGoogle Scholar
  16. 12.
    Lindblom G, Lindman B, Mandell L (1973) J Colloid Interface Sci 42:400CrossRefGoogle Scholar
  17. 13.(a)
    Hoffmann H, Platz G, Rehage H, Schorr W (1981) Ber Bunsenges Phys Chem 85:877Google Scholar
  18. 13.(b)
    Imae T, Kamiya R, Ikeda S (1985) J Colloid Interface Sci 108:215CrossRefGoogle Scholar
  19. 13.(c)
    Rehage H, Hoffmann H (1988) J Phys Chem92:4712CrossRefGoogle Scholar
  20. 14.(a)
    Imae T, Ikeda S (1986) J Phys Chem 90:5216CrossRefGoogle Scholar
  21. 14.(b)
    Imae T, Abe A, Ikeda S (1988) J Phys Chem 92:1548CrossRefGoogle Scholar
  22. 14.(c)
    Shikata T, Hirata H, Kotaka T (1987) Langmuir 3:1081CrossRefGoogle Scholar
  23. 14.(d)
    Shikata T, Hirata H, Kotaka T (1988) Langmuir 4:354CrossRefGoogle Scholar
  24. 14.(e)
    Shikata T, Hirata H, Kotaka T (1989) Langmuir 5:398CrossRefGoogle Scholar
  25. 14.(f)
    Magid LJ, Han Z, Warr GG, Cassidy MA, Butler PD, Hamilton WA (1997) J Phys Chem B 101:7919CrossRefGoogle Scholar
  26. 14.(g)
    Hassan PA, Yakhmi JV (2000) Langmuir 16:7187CrossRefGoogle Scholar
  27. 15.(a)
    Almgren M, Swarup S (1983) J Colloid Interface Sci 91:256CrossRefGoogle Scholar
  28. 15.(b)
    Backlund S, Bakken J, Blokhus AM, Høiland H, Vikholm I (1986) Acta Chem Scand A 40:241CrossRefGoogle Scholar
  29. 15.(c)
    Gomati R, Appell J, Bassereau P, Marignan J, Porte G (1987) J Phys Chem 91:6203CrossRefGoogle Scholar
  30. 15.(d)
    Blokhus AM, Høiland H, Gilje E, Backlund S (1988) J Colloid Interface Sci 124:125CrossRefGoogle Scholar
  31. 16.
    Reekmans S, Luo H, Van de Auweraer M, De Schryver FC (1990) Langmuir 6:628CrossRefGoogle Scholar
  32. 17.(a)
    Valiente M, Thunig C, Munkert U, Hoffmann HJ (1993) J Colloid Interface Sci 160:39CrossRefGoogle Scholar
  33. 17.(b)
    Forland GM, Samseth J, Høiland H, Mortensen KJ (1994) J Colloid Interface Sci 164:163CrossRefGoogle Scholar
  34. 18.
    Kabir-ud-Din, Kumar, S, Kirti, Goyal, PS (1996) Langmuir 12:1490CrossRefGoogle Scholar
  35. 19.(a)
    Prasad CD, Singh HN (1991) Colloids Surf59:27CrossRefGoogle Scholar
  36. 19.(b)
    Prasad CD, Singh HN, Goyal, PS, Rao KS (1993) J Colloid Interface Sci 155:415CrossRefGoogle Scholar
  37. 20.
    Kabir-ud-Din, Kumar S, Aswal VK, Goyal PS (1996) J Chem Soc Faraday Trans 92:2413CrossRefGoogle Scholar
  38. 21.
    Kabir-ud-Din, Bansal D, Kumar S (1997) Langmuir 13:5071CrossRefGoogle Scholar
  39. 22.
    Yue Y, Wang J, Dai M (2000) Langmuir 16:6114CrossRefGoogle Scholar
  40. 23.(a)
    Chaiko MA, Nagrajan R, Ruckenstein E (1984) J Colloid Interface Sci 99:168CrossRefGoogle Scholar
  41. 23.(b)
    Lianos P, Viriot ML, Zana R (1984) J Phys Chem 88:1098CrossRefGoogle Scholar
  42. 24.(a)
    Gradzielski M, Hoffmann H, Langevin D (1995) J Phys Chem 99:2612Google Scholar
  43. 24.(b)
    Kumar S, Bansal D, Kabir-Ud-Din (1999) Langmuir 15:4960CrossRefGoogle Scholar
  44. 25.
    Kumar S, Naqvi AZ, Kabir-ud-Din (2001) Langmuir 17:4787CrossRefGoogle Scholar
  45. 26.(a)
    Hoffmann H, Ebert G (1988) Angew Chem Int Ed Engl 27:902CrossRefGoogle Scholar
  46. 26.(b)
    Makhloufi R, Cressely R (1992) Colloid Polym Sci 270:1035CrossRefGoogle Scholar
  47. 27.
    Derome A (1987) Modern NMR techniques for chemistry research. Pergamon, Oxford, p 31Google Scholar
  48. 28.
    Novaki LP, El Seoud OA (1996) Ber Bunsenges Phys Chem 100:648Google Scholar
  49. 29.(a)
    Novaki LP, El Seoud OA (1997) Ber Bunsenges Phys Chem 101:105Google Scholar
  50. 29.(b)
    Novaki LP, El Seoud OA (1997) Ber Bunsenges Phys Chem 101:902Google Scholar
  51. 30.
    Tada EB, Novaki LP, El Seoud OA (2000) J Phys Org Chem 13:679CrossRefGoogle Scholar
  52. 31.
    Dawber JG, Ward J, Williams RA (1988) J Chem Soc Faraday Trans 184:713Google Scholar
  53. 32.
    Buurma NJ, Herranz AM, Engberts JBFN (1999) J Chem Soc Perkin Trans 2:113Google Scholar
  54. 33.(a)
    Possidonio S, Siviero F, El Seoud OA (1999) J Phys Org Chem 12:235CrossRefGoogle Scholar
  55. 33.(b)
    El Seoud OA, Ruasse MF, Possidonio S (2001) J Phys Org Chem 14:526CrossRefGoogle Scholar
  56. 34.(a)
    Israelachivili JN, Mitchell DJ, Ninham BW (1976) J Chem Soc Faraday Trans 272:1525Google Scholar
  57. 34.(b)
    Mitchell DJ, Ninham BW (1981) J Chem Soc Faraday Trans 277:601Google Scholar
  58. 35.
    Rosen MJ (1989) Surfactants and interfacial phenomena. Wiley, New York, p 397Google Scholar
  59. 36.
    Zana R (1995) Adv Colloid Interface Sci 57:1CrossRefGoogle Scholar
  60. 37.
    Davies DM, Gillitt ND, Paradis PM (1996) J Chem Soc Perkin Trans 2:659Google Scholar
  61. 38.
    Zana R (1980) J Colloid Interface Sci 78:330CrossRefGoogle Scholar
  62. 39.
    Allmann, RZ (1969) Kristallografiya 128:115CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  1. 1.Instituto de QuímicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations