Shear flow of lamellar polymer surfactants

  • Claudia SchmidtEmail author
  • Daniel Burgemeister
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 121)


Two new polymer surfactants consisting of a polysiloxane backbone with amphiphilic side chains of the nonionic oligo (ethylene oxide) type have been synthesized. The phase behavior of aqueous solutions of the low-molecular-weight surfactants, from which the side chains are formed, and of the polymer surfactants was characterized by polarizing microscopy and 2H NMR spectroscopy. Both polymers form a lamellar Lα phase over a broad range of concentrations, whereas no liquid-crystalline phases were found for the low-molecular-weight surfactants. The orientation of lamellar solutions of the polymers in steady shear flow was investigated in situ by 2H NMR spectroscopy in cone-and-plate geometry. The NMR results indicate an orientation of the layer normals parallel to the velocity gradient at low shear rates and the formation of multilamellar vesicles (onions) at intermediate shear rates for both polymers. The range of shear rates where NMR spectra characteristic of vesicles are found as well as the state of orientation at high shear rates are different for the two systems.

Key words

Nonionic surfactant Polysoap Lamellar phase Shear flow Rheo-NMR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tanford C (1980) The hydrophobic effect, 2nd edn. Wiley Interscience, New YorkGoogle Scholar
  2. 2.
    Lasic DD (1993) Liposomes: from physics to applications. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Laschewsky A (1995) Adv Polym Sci 124:1CrossRefGoogle Scholar
  4. 4.
    Jahns E, Finkelmann H (1987) Colloid Polym Sci 265:304CrossRefGoogle Scholar
  5. 5.
    Herb CA, Prud’homme RK (eds) (1994) Structure and flow in surfactant solutions. ACS symposium series 578. American Chemical Society, Washington, DCGoogle Scholar
  6. 6.
    Nakatani AI, Dadmun MD (eds) (1995) Flow-induced structures in polymers. ACS symposium series 597. American Chemical Society, Washington, DCGoogle Scholar
  7. 7.
    Mortensen KJ (1996) J Phys Condens Matter 8:A103CrossRefGoogle Scholar
  8. 8.
    Wiesner U (1997) Macromol Chem Phys 198:3319CrossRefGoogle Scholar
  9. 9.
    Hamley IW (2001) J Phys Condens Matter 13:R643CrossRefGoogle Scholar
  10. 10.
    Müller S, Börschig C, Gronski W, Schmidt C, Roux D (1999) Langmuir 15:7558CrossRefGoogle Scholar
  11. 11.
    Diat O, Roux D (1993) J Phys II 3:9CrossRefGoogle Scholar
  12. 12.
    Diat O, Roux D, Nallet F (1993) J Phys II 3:1427CrossRefGoogle Scholar
  13. 13.
    Roux D, Nallet F, Diat O (1993) Europhys Lett 24:53CrossRefGoogle Scholar
  14. 14.
    Soubiran L, Coulon C, Sierro P, Roux D (1995) Europhys Lett 31:243CrossRefGoogle Scholar
  15. 15.
    Richtering W (1997) Prog Colloid Polym Sci 104:90CrossRefGoogle Scholar
  16. 16.
    Zipfel J, Lindner P, Richtering W (1998) Prog Colloid Polym Sci 110:139CrossRefGoogle Scholar
  17. 17.
    Berghausen J, Zipfel J, Lindner P, Richtering W (1998) Europhys Lett 43:683CrossRefGoogle Scholar
  18. 18.
    Zipfel J, Berghausen J, Lindner P, Richtering W (1999) J Phys Chem B 103:2841CrossRefGoogle Scholar
  19. 19.
    Sierro P, Roux D (1997) Phys Rev Lett 78:1496CrossRefGoogle Scholar
  20. 20.
    Bergmeier M, Gradzielski M, Hoffmann H, Mortensen K (1999) J Phys Chem B 103:1605CrossRefGoogle Scholar
  21. 21.
    Schmidt G, Müller S, Schmidt C, Richtering W (1999) Rheol Acta 38:486CrossRefGoogle Scholar
  22. 22.
    Nettesheim F, Zipfel J, Lindner P, Richtering W (2001) Colloids Surf A 183–185:563CrossRefGoogle Scholar
  23. 23.
    Zipfel J, Nettesheim F, Lindner P, Le TD, Olsson U, Richtering W (2001) Europhys Lett 53:335CrossRefGoogle Scholar
  24. 24.
    Berghausen J, Zipfel J, Diat O, Narayanan T, Richtering W (2000) Phys Chem Chem Phys2:3623CrossRefGoogle Scholar
  25. 25.
    Le TD, Olsson U, Mortensen K, Zipfel J, Richtering W (2001) Langmuir 17:999CrossRefGoogle Scholar
  26. 26.
    Escalante JI, Hoffmann H (2000) J Phys Condens Matter 12:A483CrossRefGoogle Scholar
  27. 27.
    Léon A, Bonn D, Meunier J, Al-Kahwaji A, Greffier O, Kellay H (2000) Phys Rev Let 84:1335CrossRefGoogle Scholar
  28. 28.
    Meyer C, Asnacios S, Bourgaux C, Kleman M (2000) Rheol Acta 39:223CrossRefGoogle Scholar
  29. 29.
    Panizza P, Soubiran L, Coulon C, Roux D (2001) Phys Rev E 64:021501–1CrossRefGoogle Scholar
  30. 30.
    Gauffre F, Roux D (1999) Langmuir 15:3070CrossRefGoogle Scholar
  31. 31.
    Bernheim-Grosswasser A, Ugazio S, Gauffre F, Viratelle O, Mahy P, Roux D (2000) J Chem Phys 112:3424CrossRefGoogle Scholar
  32. 32.
    Gauffre F, Roux D (1999) Langmuir 15:3738CrossRefGoogle Scholar
  33. 33.
    Mouzin G, Cousse H, Rieu JP, Duflos A (1983) Synthesis 117Google Scholar
  34. 34.
    Grabowski DA, Schmidt C (1994) Macromolecules 27:2632CrossRefGoogle Scholar
  35. 35.
    Davis JH, Jeffrey KR, Bloom M, Valic MI, Higgs TP (1976) Chem Phys Lett 42:390CrossRefGoogle Scholar
  36. 36.
    Abragam A (1961) The principles of nuclear magnetism. Oxford University Press, OxfordGoogle Scholar
  37. 37.
    Pake GE (1948) J Chem Phys 16:327CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  1. 1.Fachbereich Chemie und ChemietechnikUniversität PaderbornPaderbornGermany
  2. 2.Institut für Makromolekulare ChemieUniversität FreiburgFreiburgGermany

Personalised recommendations