A novel way for the alignment of lyotropic hexagonal and Lα phases in magnetic fields

  • Annette FischerEmail author
  • HeinzS Hoffmann
  • Peter Medick
  • Ernst Rössler
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 121)


An ionically charged Lα phase can be prepared without shear by mixing a small amount of meth-ylformiate to an L3 phase from alkyldimethylaminoxide, hexanol and water. If the structural transformation induced by the hydrolysis reaction of the ester is carried out in the presence of a high magnetic field, a macroscopically aligned lamellar phase is obtained. The alignment process was studied by 2H NMR measurements. The NMR measurements allow the determination of the rate constant of the alignment process and at the same time they can be used to control the degree of macroscopic orientation of the system. In addition, we studied the formation and the alignment process of a hexagonal lyotropic mesophase. The hexagonal phase can be prepared without shear by protonating a highly concentrated alkyldimethylaminoxide solution. The reaction that is used for the protonation is the hydrolysis reaction of methylformiate to formic acid and methanol.

Key words

Lamellar phase Hexagonal phase Alignment process 2H NMR measurements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hertel G, Hoffmann H (1989) Liq Cryst 5:1883–1898CrossRefGoogle Scholar
  2. 2.
    Reizlein K, Hoffmann H (1984) Prog Colloid Polym Sci 69Google Scholar
  3. 3.
    Bartusch G, Dörfler H-D, Hoffmann H (1992) Prog Colloid Polym Sci 89:307–314CrossRefGoogle Scholar
  4. 4.
    Funari SS, Holmes MC, Tiddy GJT (1994) J Phys Chem 98:3015–3023CrossRefGoogle Scholar
  5. 5.
    Ukleja P, Chidichimo G, Photinos P (1991) Liq Cryst 9:359–367CrossRefGoogle Scholar
  6. 6.
    Weber R, Hoffmann H (1987) Liq Cryst 3:203–216CrossRefGoogle Scholar
  7. 7.
    Kitade S, Ochiai N, Takahashi Y, Noda I, Matsushita Y, Karim A, Nakatani AI, Kim H, Han CC (1998) Macromolecules 31:8083–8090CrossRefGoogle Scholar
  8. 8.
    Abillon Q, Perez E (1990) J Phys (Paris) 51:2543–2556Google Scholar
  9. 9.
    Bergmeier M, Hoffmann H, Thunig C (1997) J Chem Phys 110:5567–5671Google Scholar
  10. 10.
    Hoffmann H, Thunig C, Valiente M (1992) Colloids Surf 67:223–237CrossRefGoogle Scholar
  11. 11.
    Penders MHGM, Strey R (1995) J Phys Chem 99:6091–6095CrossRefGoogle Scholar
  12. 12.
    Bergmeier M, Gradzielski M, Hoffmann H, Mortensen K (1998) 216th ACS national meeting, Boston, 1998. Book of abstracts, pp 23–27Google Scholar
  13. 13.
    Bergmeier M, Gradzielski M, Thunig C, Hoffmann H (1998) Nuovo Cimento D 20:2251–2264Google Scholar
  14. 14.
    Briganti G, Segre AL, Capitani D, Casieri C, La Mesa C (1999) J Phys Chem 103:825–830Google Scholar
  15. 15.
    Svärd M, Schurtenberger P, Fontell K, Jönssen B, Lindman B (1988) J Phys Chem 92:2261–2270CrossRefGoogle Scholar
  16. 16.
    Capitani D, Casieri C, Briganti G, La Mesa C, Segre AL (1999) J Phys Chem103:6088–6095Google Scholar
  17. 17.
    Firouzi A, Schaefer DJ, Tolbert SH, Stucky GD, Chmelka BF (1997) J Phys Chem 119, 9466–9477Google Scholar
  18. 18.
    Schmidt M, Schwertfeger F (1998) J Non-Cryst Solids 225:364–368CrossRefGoogle Scholar
  19. 19.
    Rathman JF, Christian SD (1990) Langmuir 6:391–395CrossRefGoogle Scholar
  20. 20.
    Maeda H, Kakehashi R (2000) Adv Colloid Interface Sci 88:275–293CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • Annette Fischer
    • 1
    Email author
  • HeinzS Hoffmann
    • 1
  • Peter Medick
    • 2
  • Ernst Rössler
    • 2
  1. 1.Experimentalphysik IIUniversity of BayreuthBayreuthGermany
  2. 2.Physical Chemistry IUniversity of BayreuthBayreuthGermany

Personalised recommendations