Skip to main content

Bayesian Object Detection through Level Curves Selection

  • Conference paper
  • First Online:
  • 687 Accesses

Part of the book series: Lecture Notes in Computer Science 2106 ((LNCS,volume 2106))

Abstract

Bayesian statistical theory is a convenient way of taking a priori information into consideration when inference is made from images. In Bayesian image detection, the a priori distribution should capture the knowledge about objects. Taking inspiration from [1], we design a prior density that penalizes the area of homogeneous parts in images. The detection problem is further formulated as the estimation of the set of curves that maximizes the posterior distribution. In this paper, we explore a posterior distribution model for which its maximal mode is given by a subset of level curves, that is the boundaries of image level sets. For the completeness of the paper, we present a stepwise greedy algorithm for computing partitions with connected components.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Alvarez, Y. Gousseau, and J.M. Morel. Scales in natural images and a consequence on their bounded variation. In Int. Conf. on Scale-Space Theories Comp. Vis., pages 247–258, Kerkyra, Greece, September 1999.

    Google Scholar 

  2. A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, Cambridge, Mass, 1987.

    Google Scholar 

  3. V. Caselles, B. Coll, and J.M. Morel. Topographic maps and local contrast changes in natural images. Int J. Computer Vision, 33(1):5–27, 1999.

    Article  MathSciNet  Google Scholar 

  4. T. Chan and L. Vese. Active contour model without edges. In Int. Conf. on Scale-Space Theories Comp. Vis., pages 141–151, Kerkyra, Greece, September 1999.

    Google Scholar 

  5. L.D. Cohen. On active contour models and balloons. CVGIP: Image Understanding, 53(2):211–218, 1991.

    Article  MATH  Google Scholar 

  6. J. Crespo, R. Schafer, J. Serra, C. Gratin, and F. Meyer. The flat zone approach: a general low-level region merging segmentation method. Signal Processing, 62(1):37–60, 1997.

    Article  MATH  Google Scholar 

  7. J. Froment. Perceptible level lines and isoperimetric ratio. In Int. Conf. on Image Processing, Vancouver, Canada, 2000.

    Google Scholar 

  8. S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. Patt. Anal. and Mach. Int., 6(6):721–741, 1984.

    Article  MATH  Google Scholar 

  9. U. Grenander and M.I. Miller. Representations of knowledge in complex systems. J. Royal Statistical Society, series B, 56(4):549–603, April 1994.

    MathSciNet  MATH  Google Scholar 

  10. R. Jones. Connecting filtering and segmentation using component trees. Computer Vision and Image Understanding, 75(3):215–228, 1999.

    Article  Google Scholar 

  11. J.N. Kapur, P.K. Sahoo, and A.K.C. Wong. A new method for gray-level picture thresholding using the entropy of the histogram. Comp. Vis. Graphics and Image Proc., 29:273–285, 1985.

    Article  Google Scholar 

  12. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active contour models. Int J. Computer Vision, 12(1):321–331, 1987.

    Google Scholar 

  13. C. Kervrann, M. Hoebeke, and A. Trubuil. Level lines as global minimizers of energy functionals in image segmentation. In Euro. Conf. on Comp. Vis., pages 241–256, Dublin, Ireland, June 2000.

    Google Scholar 

  14. G. Koepfler, C. Lopez, and J.M. Morel. A multiscale algorithm for image segmentation by variational method. SIAM J. Numerical Analysis, 31(1):282–299, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Matheron. Random Sets and Integral Geometry. John Wiley, New York, 1975.

    MATH  Google Scholar 

  16. J. M∅ller and R.P. Waagepertersen. Markov connected component fields. Adv. in Applied Probability, pages 1–35, 1998.

    Google Scholar 

  17. J.M. Morel and S. Solimini. Variational methods in image segmentation. Birkhauser, 1994.

    Google Scholar 

  18. D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and variational problems. Communication on Pure and applied Mathematics, 42(5):577–685, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Osher and J. Sethian. Fronts propagating with curvature dependent speed: algorithms based on the hamilton-jacobi formulation. J. Computational Physics, 79:12–49, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  20. N. Paragios and R. Deriche. Coupled geodesic active regions for image segmentation: a level set approach. In Euro. Conf. on Comp. Vis., pages 224–240, Dublin, Ireland, June 2000.

    Google Scholar 

  21. P. Salembier and J. Serra. Flat zones filtering, connected operators, and filters by reconstruction. IEEE Trans. Image Processing, 4(8):1153–1160, 1995.

    Article  Google Scholar 

  22. J. Sethian. Level Sets Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Material Science. Cambridges University Press, 1996.

    Google Scholar 

  23. L. Vincent and P. Soille. Watershed in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Patt. Anal. and Mach. Int., 13(6):583–598, 1991.

    Article  Google Scholar 

  24. A. Yezzi, A. Tsai, and A. Willsky. A statistical approach to snakes for bimodal and trimodal imagery. In Int. Conf. on Comp. Vis., pages 898–903, Kerkyra, Greece, September 1999.

    Google Scholar 

  25. S.C Zhu and A. Yuille. Region competition: unifying snakes, region growing, and bayes/mdl for multiband image segmentation. IEEE Trans. Patt. Anal. and Mach. Int., 18(9):884–900, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kervrann, C. (2001). Bayesian Object Detection through Level Curves Selection. In: Kerckhove, M. (eds) Scale-Space and Morphology in Computer Vision. Scale-Space 2001. Lecture Notes in Computer Science 2106, vol 2106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47778-0_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-47778-0_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42317-1

  • Online ISBN: 978-3-540-47778-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics