Advertisement

Features in Scale Space: Progress on the 2D 2nd Order Jet

  • Elena Tagliati
  • Lewis D. Griffin
Conference paper
Part of the Lecture Notes in Computer Science 2106 book series (LNCS, volume 2106)

Abstract

We present theoretical and computational results that develop Koenderink’s theory of feature analysis in human vision [1,7]. Employing a scale space framework, the method aims to classify image points into one of a limited number of feature categories on the basis of local derivative measurements up to some order. At the heart of the method is the use of a family of functions, members of which can be used to account for any set of image measurements. We will show how certain families of simple functions naturally induce a categorical structure onto the space of possible measurements. We present two such families suitable for 1D images measured up to 2nd order, and various results relevant to similar analysis of 2D images.

Keywords

Scale Space Observation Vector Step Edge Representative Function Scale Relationship 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koenderink, J.J., van Doorn, A. Receptive Field Assembly Specificity. J. Vis. Comm. and Im. Process, Vol.3,No. 1, (1992) 1–12CrossRefGoogle Scholar
  2. 2.
    Koenderink, J.J., van Doorn, A. The Structure of Images. Biol. Cybern., Vol.50, (1984) 363–370zbMATHCrossRefGoogle Scholar
  3. 3.
    Koenderink, J.J., van Doorn, A. Representation of Local Geometry in the Visual System. Biol. Cybern., Vol.55, (1987) 367–375zbMATHCrossRefGoogle Scholar
  4. 4.
    Koenderink, J.J., van Doorn, A. Generic Neighborhood Operators. IEEE Trans. on Pattern An. Mach. Intell., Vol.14,No. 6, (1992) 597–605CrossRefGoogle Scholar
  5. 5.
    Koenderink, J.J., van Doorn, A.: Illuminance Critical Points On Generic Smooth Surfaces. J.Opt.Soc.Am. A, Vol.10,No. 5(1923) 844–854CrossRefGoogle Scholar
  6. 6.
    Koenderink, J.J., van Doorn, A. Mensurating the Colour Circle: Ostwald’s “Principle of Internal Symmetry”. ECVP(2000)Google Scholar
  7. 7.
    Koenderink, J.J. What is a Feature?. J. Intell. Syst., Vol.3,No. 1, (1993) 49–82MathSciNetGoogle Scholar
  8. 8.
    ter Haar Romeny, B.M., Florack, L.M.J., Koenderink, J.J., Viergever M.A. Scale Space: Its Natural Operators and Differential Invariants. In: Information Process. in Medical Imag., LCNS, Vol.511, (1991) 239–255Google Scholar
  9. 9.
    Weickert, J., Ishikawa, S., and Imiya A. On the History of Gaussian Scale Space Axiomatics. In: Gaussian Scale-Space Theory, Kluwer, Dordrecht, (1997) 45–59CrossRefGoogle Scholar
  10. 10.
    ter Haar Romeny, B. Applications of Scale Space Theory. In: Gaussian Scale-Space Theory, Kluwer, Dordrecht, (1997) 3–19CrossRefGoogle Scholar
  11. 11.
    Nielsen, M. Scale Space Generators and Functionals. In: Gaussian Scale-Space Theory, Kluwer, Dordrecht, (1997) 99–114CrossRefGoogle Scholar
  12. 12.
    Lindeberg, T. Scale Space Theory in Computer Vision. Kluwer, Boston, MA, (1994)CrossRefGoogle Scholar
  13. 13.
    Lindeberg, T.: On the Axiomatic Foundations of Linear Scale Space. In: Gaussian Scale-Space Theory, Kluwer, Dordrecht, (1997) 75–97CrossRefGoogle Scholar
  14. 14.
    Richards, W.: Quantifying Sensory Channels-Generalizing Colorimetry To Orientation And Texture, Touch, And Tones. Sensory Processes, Vol.3,No. 3, (1979) 207–229Google Scholar
  15. 15.
    Young, R.A. The Gaussian Derivative Theory of Spatial Vision: Analysis of Cortical Cell Receptive Field Line-Weighting Profiles. Gen.Motors Res.Tech.Rep. GMR-4920, (1985)Google Scholar
  16. 16.
    Schrödinger, E.: Theorie der Pigmente von größter Leuchtkraft, Ann. Physik, Vol.62, (1920) 603CrossRefGoogle Scholar
  17. 17.
    Schrödinger, E.: Grundlinien einer Theorie der Farbenmetrik im Tagessehen I, II, Ann. Physik, Vol.63, (1920) 397–427CrossRefGoogle Scholar
  18. 18.
    Majthay, A.: Foundations of Catastrophe Theory, Pitman Adv. Publ. Progr., (1985) 137–146Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Elena Tagliati
    • 1
  • Lewis D. Griffin
    • 1
  1. 1.Div. of Radiological Sciences and Medical EngineeringThe Guy’s King’s and St’Thomas’ Medical and Dental SchoolLondonUK

Personalised recommendations