Advertisement

Hierarchical Segmentation Using Dynamics of Multiscale Color Gradient Watersheds

  • Iris Vanhamel
  • Ioannis Pratikakis
  • Hichem Sahli
Conference paper
Part of the Lecture Notes in Computer Science 2106 book series (LNCS, volume 2106)

Abstract

In this paper, we describe and compare two multiscale color segmentation schemes basedon the Gaussian multiscale and the Perona and Malik anisotropic difusion. The proposed segmentation schemes consist of an extension to color images of an earlier multiscale hierarchical watershedsegm entation for scalar images. Our segmentation scheme constructs a hierarchy among the watershed regions using the principle of dynamics of contours in scale-space. Each contour is valuated by combining the dynamics of contours over the successive scales. We conduct experiments on the scale-space stacks created by the Gaussian scale-space and the Perona and Malik anisotropic difusion scheme. Our experimental results consist of the comparison of both schemes with respect to the following aspects: size andin formation reduction between successive levels of the hierarchical stack, dynamics of contours in scale space and computation time.

Keywords

Color Image Hierarchical Level Mathematical Morphology Segmentation Scheme Mosaic Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Beucher. Watershed, hierarchical segmentation and waterfall algorithm. In J. Serra and P. Soille, editors, Mathematical Morphology and its applications on Image and Signal processing (ISMM’94), pages 69–76. Kluwer Academic Press, 1994.Google Scholar
  2. 2.
    J. Bosworth, T. Koshimizu and S.T. Acton. Automated Segmentationof Surface Soil Moisture From Landsat TM Data, In Proc. of the IEEE Southwest Symposium on Image Analysis and Interpretation, Tucson, April 6-7, 1998.Google Scholar
  3. 3.
    F. Catte, P.-L. Lions, J.-M. Morel, and T. Coll. Image Selective Smoothing and Edge Detection by Nonlinear Difusion. SIAM J. Numer. Anal., vol. 29(1):182–193, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    J. Crespo and R. Schafer. The flat zone approach and color images. In J. Serra and P. Soille, editors, Mathematical Morphology and its applications on Image and Signal processing (ISMM’94), pages 85–92. Kluwer Academic Press, 1994.Google Scholar
  5. 5.
    C.H. Demarty and S. Beucher. Color segmentation algorithm using an HLStr ansformation. In H. Heijmans and J. Roerdink, editors, Mathematical Morphology and its applications on Image and Signal processing (ISMM’98), pages 231–238. Kluwer Academic Press, 1998.Google Scholar
  6. 6.
    P. De Smet, R. Pires, D. De Vleeschauwer, I. Bruyland. Activity driven non-linear difusion for color image watershed segmentation. Journal of Electronic Imaging (SPIE), Volume 08(03), 1999.Google Scholar
  7. 7.
    F. Meyer. Color image segmentation. In 4th IEEE Conference on Image Processing and applications, volume 354:53Google Scholar
  8. 8.
    L. Najman and M. Schmitt. Geodesic Saliency of Watershed Contours and Hierarchical Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18(12):1163–1173, 1996.CrossRefGoogle Scholar
  9. 9.
    P. Perona and J. Malik. Scale-space and edge detection using anisotropic difusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, volume 12(7):629–639, 1990.CrossRefGoogle Scholar
  10. 10.
    I. Pratikakis, H. Sahli, and J. Cornelis. Hierarchical segmentation using dynamics of multiscale gradient watershed. 11th Scandinavian Conference on Image Analysis 99, pp. 577–584, 1999.Google Scholar
  11. 11.
    I. Vanhamel, I. Pratikakis, H. Sahli. Automatic Watershed segmentation of color images. In J. Goutsia, L. Vincent and Dan S. Bloomberg, editors, Mathematical Morphology and its applications on Image and Signal processing (ISMM’00), pp. 207–214. Kluwer Academic Press, 2000.Google Scholar
  12. 12.
    J. Weickert. Fast segmentation methods based on partial differential equations and the watershed transformation. In. P. Levi, R-J. Ahlers, F. May, M. Shanz, editors. Mustererkennung 1998, Springer, Berlin, pp. 93–100, 1998.CrossRefGoogle Scholar
  13. 13.
    J. Weickert. Anisotropic Difusion in Image Processing ECMI Series, Teubner, Stuttgart, 1998.Google Scholar
  14. 14.
    J. Weickert, B.M. ter Haar Romeny, M.A. Viergever. Efficient and Reliable Schemes for Nonlinear Difusion Filtering. IEEE transactions on image processing, volume 7(3):398–410, 1998CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Iris Vanhamel
    • 1
  • Ioannis Pratikakis
    • 1
  • Hichem Sahli
    • 1
  1. 1.Vrije Universiteit Brussel - ETR0 - IRISBrusselsBelgium

Personalised recommendations