Advertisement

Histograms of Infinitesimal Neighbourhoods

  • Lewis D. Griffin
Conference paper
Part of the Lecture Notes in Computer Science 2106 book series (LNCS, volume 2106)

Abstract

Image analysis methods that use histograms defined over non-zerosized local neighbourhoods have been proposed [1-4]. To better understand such methods, one can study the histograms of infinitesimal neighbourhoods. In this paper we show how the properties of such histograms can be derived through limit arguments. We show that in many cases the properties of these histograms are given by simple expressions in terms of spatial derivatives at the point analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Noest, A.J., Koenderink, J.J.: Visual coherence despite visual transparency or partial occlusion. Perception 19 (1990) 384Google Scholar
  2. [2]
    Griffin, L.D.: Scale-imprecision space. Image Vis. Comput. 15(5) ( 1997) 369–398MathSciNetCrossRefGoogle Scholar
  3. [3]
    Koenderink, J.J., Van Doorn, A.J.: The structure of locally orderless images. Int. J. Comput. Vis. 31(2-3) (1999) 159–168CrossRefGoogle Scholar
  4. [4]
    van Ginneken, B., ter Haar Romeny, B.M.: Applications of locally orderless images. J. Vis. Comm. Imag. Rep. 11(2) (2000) 196–208CrossRefGoogle Scholar
  5. [5]
    Griffin, L.D.: Mean, Median and Mode Filtering of Images. Proc. Roy. Soc. A 456(2004) (2000) 2995–3004Google Scholar
  6. [6]
    Russell, B.: The Principles of Mathematics. Routledge, London (1903)zbMATHGoogle Scholar
  7. [7]
    Newton, I.: Principia. (1687)Google Scholar
  8. [8]
    Leibniz, G.W.: Mathematical Works. Open Court, London (1920)Google Scholar
  9. [9]
    Diener, F., Diener, M., ed.: Nonstandard Analysis in Practice. Springer-Verlag, Berlin (1995)zbMATHGoogle Scholar
  10. [10]
    Richards, J.I., Youn, H.K.: Theory of Distributions. Cambridge University Press, Cambridge (1990)zbMATHCrossRefGoogle Scholar
  11. [11]
    Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., Viergever, M.A.: Images: Regular Tempered Distributions, In: Shape in Picture. vol. 126 (O, Y.-L., Toet, A., Foster, D., Heijmans, H.J.A.M., Meer, P., eds.), Springer-Verlag, Berlin, pp. 651–660.Google Scholar
  12. [12]
    Koenderink, J.J.: The Structure of Images. Biol. Cybern. 50(5) (1984) 363–370MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Koenderink, J.J.: What is a feature? J. Intell. Syst. 3(1) (1993) 49–82MathSciNetGoogle Scholar
  14. [14]
    Koenderink, J.J.: Operational Significance of Receptive-Field Assemblies. Biol. Cybern. 58(3) (1988) 163–171MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    Koenderink, J.J., van Doorn, A.J.: Receptive Field Assembly Specificity. J. Vis. Comm. Imag. Rep. 3(1) (1992) 1–12CrossRefGoogle Scholar
  16. [16]
    Koenderink, J.J., van Doorn, A.J.: Generic Neighborhood Operators. IEEE Trans. Patt. Anal. Mach. Intell. 14(6) (1992) 597–605CrossRefGoogle Scholar
  17. [17]
    Koenderink, J.J., van Doorn, A.J.: Receptive-Field Families. Biol. Cybern. 63(4) (1990) 291–297zbMATHCrossRefGoogle Scholar
  18. [18]
    Koenderink, J.J., van Doorn, A.J.: Representation of Local Geometry in the Visual-System. Biol. Cybern. 55(6) (1987) 367–375zbMATHCrossRefGoogle Scholar
  19. [19]
    Romeny, B.M.T., Florack, L.M.J., Salden, A.H., Viergever, M.A.: Higher-Order Differential Structure of Images. Image Vis. Comput. 12(6) (1994) 317–325CrossRefGoogle Scholar
  20. [20]
    Lindeberg, T.: Scale-Space for Discrete Signals. IEEE Trans. Patt. Anal. Mach. Intell. 12(3) (1990) 234–254CrossRefGoogle Scholar
  21. [21]
    Marr, D.: Vision. W H Freeman & co, New York (1982)Google Scholar
  22. [22]
    Davies, E.R.: On the noise suppression and image enhancement characteristics of the median, truncated median and mode filters. Patt. Recog. Lett. 7(2) (1988) 87–97CrossRefGoogle Scholar
  23. [23]
    Evans, A.N., Nixon, M.S.: Mode filtering to reduce ultrasound speckle for feature extraction. IEE Proc. Visual. Image & Sig. Process. 142(2) (1995) 87–94CrossRefGoogle Scholar
  24. [24]
    Torroba, P.L., Cap, N.L., Rabal, H.J., Furlan, W.D.: Fractional order mean in image processing. Opt. Eng. 33(2) (1994) 528–533CrossRefGoogle Scholar
  25. [25]
    Guichard, F., Morel, J.-M.: Partial differential equations and image iterative filtering, CEREMADE, Université Paris IX, Paris.Google Scholar
  26. [26]
    Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)zbMATHGoogle Scholar
  27. [27]
    Viola, P.A.: Alignment by Maxsimization of Mutual Information, In: Artificial Intelligence Laboratory, Massachusetts Institute of Technology, pp. 156.Google Scholar
  28. [28]
    Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Med. Image Anal. 2(1) (1998) 1–36CrossRefGoogle Scholar
  29. [29]
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons (1991)Google Scholar
  30. [30]
    Studholme, C., Hill, D.L.G., Hawkes, D.J.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit. 32(1) (1999) 71–86CrossRefGoogle Scholar
  31. [31]
    Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Image registration by maximization of combined mutual information and gradient information. IEEE Trans. Med. Imaging 19(8) (2000) 809–814CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Lewis D. Griffin
    • 1
  1. 1.King’s CollegeLondon

Personalised recommendations