Scale-Spaces, PDE’s, and Scale-Invariance

  • Henk J. A. M. Heijmans
Conference paper
Part of the Lecture Notes in Computer Science 2106 book series (LNCS, volume 2106)


In the literature an image scale-space is usually defined as the solution of an initial value problem described by a PDE, such as a linear or nonlinear diffusion equation. Alternatively, scale-spaces can be defined in an axiomatic way starting from a fixed-scale image operator (e.g. a linear convolution or a morphological erosion) and a group of scalings. The goal of this paper is to explain the relation between these two, seemingly very different, approaches.


Erential Equation Image Operator Multiscale Analysis Kernel Operator Semigroup Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Alvarez, F. Guichard, P.L. Lions, and J.M. Morel. Axioms and fundamental equations of image processing. Archive for Rational Mechanics and Analysis., 16(9):200–257, 1993.MathSciNetGoogle Scholar
  2. 2.
    L. Alvarez and J.M. Morel. Formalization and computational aspects of image analysis. Acta Numerica, pages 1–59, 1994.Google Scholar
  3. 3.
    R.W. Brockett and P. Maragos. Evolution equations for continuous-scale morphological filtering. IEEE Transactions on Signal Processing, 42(12):3377–3386, 1994.CrossRefGoogle Scholar
  4. 4.
    F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll. Image selective smoothing and edge detection by nonlinear difusion. SIAM J. numerical analysis, 29(1):182–193, 1992.zbMATHCrossRefGoogle Scholar
  5. 5.
    M. Crandall, H. Ishii, and P. Lions. User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc., 27:1–67, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    L.M.J. Florack. Image Structure, volume 10 of Computational Imaging and Vision Series. Kluwer Academic Publishers, Dordrecht, 1997.Google Scholar
  7. 7.
    H.J.A.M. Heijmans. Morphological Image Operators. Academic Press, Boston, 1994.zbMATHGoogle Scholar
  8. 8.
    H.J.A.M. Heijmans and P. Maragos. Lattice calculus of the morphological slope transform. Signal Processing, 59(1):17–42, 1997.zbMATHCrossRefGoogle Scholar
  9. 9.
    H.J.A.M. Heijmans and R. van den Boomgaard. Algebraic framework for linear and morphological scale-spaces. Research Report PNA-R0003, CWI, 2000 (to appear in JVCIR).Google Scholar
  10. 10.
    J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms. Parts I and II. Springer, Berlin, 1993.Google Scholar
  11. 11.
    P.T. Jackway. Properties of multiscale morphological smoothing by poweroids. Pattern Recognition Letters, 15:135–140, 1994.zbMATHCrossRefGoogle Scholar
  12. 12.
    P.T. Jackway. Gradient watersheds in morphological scale-space. IEEE Transactions on Image Processing, 5(6):913–921, 1996.CrossRefGoogle Scholar
  13. 13.
    P. Maragos and M.A. Butt. Curve evolution, differential morphology, and distance transforms applied to multiscale and eikonal problems. Fundamenta Informaticae, 41(1-2):91–129, 2000.MathSciNetzbMATHGoogle Scholar
  14. 14.
    P. Olver, G. Sapiro, and A. Tannenbaum. Differential invariant signatures and flows in computer vision: A symmetry group approach. In B.M. ter Haar Romeny, editor, Geometry Driven Difusion in Computer Vision, pages 255–306. Kluwer Academic Publishers, Dordrecht, 1994.CrossRefGoogle Scholar
  15. 15.
    P.J. Olver. Applications of Lie Groups to Differential Equations. Springer Verlag, New York, 1986.zbMATHCrossRefGoogle Scholar
  16. 16.
    S. Osher and J.A. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79(1):12–49, 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    E.J. Pauwels, L.J. Van Gool, P. Fiddelaers, and T. Moons. An extended class of scale-invariant and recursive scale space filters. IEEE Trans. Pattern Analysis and Machine Intelligence, 17(7):691–701, 1995.CrossRefGoogle Scholar
  18. 18.
    P. Perona and J. Malik. Scale space and edge detection using anisotropic difusion. In Workshop on Computer Vision, (Miami Beach, FL, November 30-December 2, 1987), pages 16–22, Washington, DC., 1987. IEEE Computer Society Press.Google Scholar
  19. 19.
    P. Perona and J. Malik. Scale-space and edge detection using anisotropic difusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7):629–639, July 1990.CrossRefGoogle Scholar
  20. 20.
    G. Sapiro and A. Tannenbaum. On affine plane curve evolution. Journal of Functional Analysis, 119:79–120, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    J.A. Sethian. Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Materials Science. Cambridge University Press, Cambridge, 1996.zbMATHGoogle Scholar
  22. 22.
    B.M. ter Haar Romeny, editor. Geometry-Driven Difusion in Computer Vision. Kluwer Academic Publishers, Dordrecht, 1994.Google Scholar
  23. 23.
    V.I. Tsurkov. An analytical model of edge protection under noise suppression by anisotropic difusion. J. Computer and Systems Sciences International, 39(3):437–440, 2000.Google Scholar
  24. 24.
    R. van den Boomgaard and H.J.A.M. Heijmans. Morphological scale-space operators: an algebraic approach. In J. Goutsias, L. Vincent, and D.S. Bloomberg, editors, Mathematical Morphology and its Applications to Image and Signal Processing, ISMM 2000, pages 283–290, Boston, 2000. Kluwer Academic Publishers.Google Scholar
  25. 25.
    R. van den Boomgaard and A. Smeulders. The morphological structure of images: the differential equations of morphological scale space. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16:1101–1113, 1994.CrossRefGoogle Scholar
  26. 26.
    R. van den Boomgaard and A.W.M. Smeulders. Towards a morphological scale-space theory. In Y-L. O, A. Toet, D. Foster, H.J.A.M. Heijmans, and P. Meer, editors, Proceedings of the Workshop “Shape in Picture”, 7-11 September 1992, Driebergen, The Netherlands, pages 631–640, Berlin, 1994. Springer.Google Scholar
  27. 27.
    J. Weickert. Anisotropic Difusion in Image Processing. Teubner-Verlag, Stuttgart, 1998.Google Scholar
  28. 28.
    K. Yosida. Functional Analysis. Springer, Berlin, 1980.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Henk J. A. M. Heijmans
    • 1
  1. 1.Centre for Mathematics and Computer Science (CWI)AmsterdamThe Netherlands

Personalised recommendations