Skip to main content

Problems and Results around the Erdös-Szekeres Convex Polygon Theorem

  • Conference paper
  • First Online:
Discrete and Computational Geometry (JCDCG 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2098))

Included in the following conference series:

Abstract

Eszter Klein’s theorem claims that among any 5 points in the plane, no three collinear, there is the vertex set of a convex quadrilateral.An application of Ramsey’s theorem then yields the classical Erdös-Szekeres theorem [19]: For every integer n ≥ 3 there is an N0 such that, among any set of NN 0 points in general position in the plane, there is the vertex set of a convex n-gon. Let f(n) denote the smallest such number.

The authors gratefully acknowledge that they have been partially supported by Hungarian Research Grants OTKA T032452 and F030822, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Ahrens, G. Gordon, and E.W. McMahon, Convexity and the beta invariant, Discr. Comp. Geom. 22 (1999), 411–424.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Avis, K. Hosono, and M. Urabe, On the existence of a point subset with a specified number of interior points, to appear in Discr. Math.

    Google Scholar 

  3. D. Avis, K. Hosono, and M. Urabe, On the existence of a point subset with 4 or 5 interior points, in: Discrete and Computational Geometry (J. Akiyama, M. Kano, and M. Urabe, eds.), Lecture Notes in Comp. Sci. 1763, Springer (2000), pp. 56–64.

    Google Scholar 

  4. D. Avis and D. Rappaport, Computing the largest empty convex subset of a set of points, Proc. 1st ACM Symp. Comp. Geom., Baltimore (1985), pp. 161–167.

    Google Scholar 

  5. I. B’ar’any and Z. Füredi, Empty simplices in Euclidean spaces, Canad. Math. Bull. 30 (1987), 436–445.

    MATH  MathSciNet  Google Scholar 

  6. I. B’ar’any, Z. Füredi, and L. Lov’asz, On the number of halving planes, Combinatorica 10 (1990), 175–183.

    Article  MATH  MathSciNet  Google Scholar 

  7. I. B’ar’any and P. Valtr, A positive fraction Erdös-Szekeres theorem, Discr. Comp. Geom. 19 (1998), 335–342.

    Article  MATH  MathSciNet  Google Scholar 

  8. I. B’ar’any and P. Valtr, Planar point sets with a small number of empty convex polygons, manuscript (1999).

    Google Scholar 

  9. A. Bialostocki, P. Dierker, and B. Voxman, Some notes on the Erdös-Szekeres theorem, Discr. Math. 91 (1991), 231–238.

    Article  MATH  MathSciNet  Google Scholar 

  10. T. Bisztriczky and G. Fejes Tóoth, On general Erdös-Szekeres numbers, manuscript (1994).

    Google Scholar 

  11. A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G.M. Ziegler, Oriented Matroids, Encyclopedia Math. Appl. 46, Cambridge University Press (1993).

    Google Scholar 

  12. Y. Caro, On the generalized Erdös-Szekeres conjecture — A new upper bound, Discr. Math. 160 (1996), 229–233.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Cordovil and P. Duchet, Cyclic polytpes and oriented matroids, European J. Comb. 21 (2000) 49–64.

    Article  MATH  MathSciNet  Google Scholar 

  14. L. Danzer, B. Grünbaum, and V. Klee, Helly’s theorem and its relatives, Proc. Symp. Pure Math. Vol 7, AMS Providence RI (1963), pp. 101–138.

    Google Scholar 

  15. D.P. Dobkin, H. Edelsbrunner, and M. Overmars, Searching for empty convex polygons, Algorithmica 5 (1990), 561–571.

    Article  MATH  MathSciNet  Google Scholar 

  16. D. Dumitrescu, Planar point sets with few empty polygons, Studia Sci. Math. Hungar. 36 (2000), 93–107.

    MATH  MathSciNet  Google Scholar 

  17. P. Edelman and V. Reiner, Counting the interior points of a point configuration, Discr. Comp. Geom. 23 (2000), 1–14.

    Article  MATH  MathSciNet  Google Scholar 

  18. P. Erdös, On some unsolved problems in elementary geometry (in Hungarian), Mat. Lapok 2 (1992), 1–10.

    Google Scholar 

  19. P. Erdös and G. Szekeres, A combinatorial problem in geometry, Comp. Math. 2 (1935), 463–470.

    MATH  Google Scholar 

  20. P. Erdös and G. Szekeres, On some extremum problems in elementary geometry, Ann. Univ. Sci. Budapest. Eötvös, Sect. Math. 3/4 (1960-61), 53–62.

    Google Scholar 

  21. P. Erdös, Zs. Tuza, and P. Valtr, Ramsey-remainder, European J. Comb. 17 (1996) 519–532.

    Article  MATH  Google Scholar 

  22. Z. Füredi, Private communication (1989).

    Google Scholar 

  23. H. Harborth, Konvexe Fünfecke in ebenen Punktmengen, Elem. Math. 33 (1978), 116–118.

    MATH  MathSciNet  Google Scholar 

  24. J.D. Horton, Sets with no empty 7-gons, Canad. Math. Bull. 26 (1983), 482–484.

    MATH  MathSciNet  Google Scholar 

  25. K. Hosono, Gy. K’arolyi, and M. Urabe, On the existence of a convex polygon with a specified number of interior points, submitted for publication in Comput. Geom. Theory Appl.

    Google Scholar 

  26. K. Hosono, D. Rappaport, and M. Urabe, On convex decomposition of points, submitted to the Japanese Conf. Discr. Comput. Geom. (2000).

    Google Scholar 

  27. K. Hosono and M. Urabe, On the number of disjoint convex quadrilaterals for a planar point set, submitted for publication in Comp. Geom. Theory Appl.

    Google Scholar 

  28. G. Kalai, Private communication (1997).

    Google Scholar 

  29. M. Katchalski and A. Meir, On empty triangles determined by points in the plane, Acta Math. Hung. 51 (1988), 323–328.

    Article  MathSciNet  MATH  Google Scholar 

  30. Gy. K’arolyi, Ramsey-remainder for convex sets and the Erdös-Szekeres theorem, to appear in Discr. Appl. Math.

    Google Scholar 

  31. Gy. K’arolyi and G. T’oth, An Erdös-Szekeres type problem in the plane, Period. Math. Hung. 39 (1999), 153–159.

    Article  MATH  MathSciNet  Google Scholar 

  32. Gy. K’arolyi, J. Pach, and G. T’oth, A modular version of the Erdös-Szekeres theorem, to appear in Studia Sci. Math. Hungar.

    Google Scholar 

  33. Gy. K’arolyi and P. Valtr, Point configurations in d-space without large subsets in convex position, submitted for publication in Discr. Comp. Geom.

    Google Scholar 

  34. W. Morris and V. Soltan, The Erdös-Szekeres problem on points in convex position — a survey, Bull. Amer. Math. Soc. 37 (2000), 437–458.

    Article  MATH  MathSciNet  Google Scholar 

  35. H. Nyklov’a, Almost empty polygons, preprint, KAM-DIMATIA Series 2000-498.

    Google Scholar 

  36. M. Overmars, B. Scholten, and I. Vincent, Sets without empty convex 6-gons, Bull. European Assoc. Theor. Comp. Sci. 37 (1989), 160–168.

    MATH  Google Scholar 

  37. J. Pach, A Tverberg type result on multicolored simplices, Comp. Geom. Theory Appl. 10 (1998), 71–76.

    MATH  MathSciNet  Google Scholar 

  38. J. Pach, The Happy End problem — The beginnings of combinatorial geometry (in Hungarian), manuscript (2000).

    Google Scholar 

  39. J. Pach and J. Solymosi, Canonical theorems for convex sets, Discr. Comp. Geom., 19 (1998), 427–436.

    Article  MATH  MathSciNet  Google Scholar 

  40. A. P’or, Combinatorial properties of finite point sets (in Hungarian) Diploma Thesis, Budapest (1996).

    Google Scholar 

  41. A. P’or, A partitioned version of the Erdös-Szekeres theorem, submitted for publication in Discr. Comp. Geom.

    Google Scholar 

  42. J. Rambau, Triangulations of cyclic polytopes and higher Bruhat orders, Mathematika 44 (1997), 162–194.

    Article  MATH  MathSciNet  Google Scholar 

  43. J. Solymosi, Combinatorial problems in finite Ramsey theory (in Hungarian), Diploma Thesis, Budapest (1988).

    Google Scholar 

  44. G. T’oth and P. Valtr, Note on the Erdös-Szekeres theorem, Discr. Comp. Geom. 19 (1998), 457–459.

    Article  MATH  MathSciNet  Google Scholar 

  45. M. Urabe, On a partition into convex polygons, Discr. Appl. Math. 64 (1996), 179–191.

    Article  MATH  MathSciNet  Google Scholar 

  46. M. Urabe, Partitioning point sets in space into disjoint convex polytopes, Comp. Geom. Theory Appl. 13 (1999), 173–178.

    MATH  MathSciNet  Google Scholar 

  47. P. Valtr, Sets in Rd with no large empty convex subsets, Discr. Math. 108 (1992), 115–124.

    Article  MATH  MathSciNet  Google Scholar 

  48. P. Valtr, On the minimum number of empty polygons in planar point sets, Studia Sci. Math. Hungar. 30 (1995), 155–163.

    MATH  MathSciNet  Google Scholar 

  49. P. Valtr, Private communication (2000).

    Google Scholar 

  50. P. Valtr, A sufficient condition for the existence of large empty convex polygons, manuscript (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bárány, I., Károlyi, G. (2001). Problems and Results around the Erdös-Szekeres Convex Polygon Theorem. In: Akiyama, J., Kano, M., Urabe, M. (eds) Discrete and Computational Geometry. JCDCG 2000. Lecture Notes in Computer Science, vol 2098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47738-1_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-47738-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42306-5

  • Online ISBN: 978-3-540-47738-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics